PRICE OF ANARCHY: QUANTIFYING THE INEFFICIENCY OF EQUILIBRIA

Zongxu Mu

"The Invisible Hand"

Source: http://en.wikipedia.org/wiki/File:AdamSmith.jpg

Equilibria and Efficiency

Central to free market economics

The Wealth of Nations (Smith, 1776)

- "... led by an invisible hand to promote an end which was no part of his intention"
- Self-interest agents \rightarrow social-efficient outcomes

Inefficiency of Equilibria

Inefficient equilibrium in markets:

- Of certain structures (e.g., monopoly)
- For certain kinds of goods (e.g., public goods)
- With externalities (e.g., pollution)

Government interventions can be beneficial

There is a price (efficiency lost) of "anarchy"—

absence of order

or government

-- Merriam Webster

•

Inefficiency of Equilibria

Nash equilibrium: DD

- Pareto-dominated
- The only non-Pareto-optimal outcome!

Pareto-optimality: a qualitative observation

A quantitative measure?

Prisoner's Dilemma

Outline

Inefficiency of Equilibria – A Short History

Source: http://en.wikipedia.org/wiki/File:John Forbes Nash, Jr. by Peter Badge.jpg

Source: http://www.cs.berkeley.edu/~christos/index_files/image002.png

Source: http://en.wikipedia.org/wiki/File:Anatol Rapoport.jpg

Inefficiency of Equilibria

Optimality in utilities?

• Utilities of different persons cannot be compared or summed up

Cost or payoff may also have concrete interpretations

• Money, network delay, ...

Specific objective functions for "social cost"

- Utilitarian: $f(o) = \sum u_i$
- Egalitarian: $f(o) = \max(u_i)$

Inefficiency of Equilibria

Objective Function -> Quantify

Price of Anarchy

• Similar to approximation ratio

 $PoA = \frac{f(worst \ equilibrium)}{f(optimal \ outcome)}$

$$=\frac{(-3)+(-3)}{(-1)+(-1)}=3$$

Prisoner's Dilemma

Price of Anarchy – Properties and Interests

Can be unbounded

• $d \rightarrow +\infty$

•
$$PoA = \frac{(-d) + (-d)}{(-1) + (-1)} = d \to +\infty$$

Can be bounded

Is central control needed?

Mechanism design

Prisoner's Dilemma

- Pigou's (1920) example
- *s*: source; *t*: sink
- c(x): unit cost of an edge
- 1 unit of traffic in total
- What is the Nash equilibrium?

Pigou's (1920) example

- Nash equilibrium:
 - All traffic on the lower edge
 - Total cost: $1 \times c(1) = 1$

Pigou's (1920) example

- Optimal solution:
 - Half traffic on each edge
 - Total cost: $0.5 \times 1 + 0.5 \times 0.5 = 0.75$

• Price of anarchy = $\frac{1}{0.75} = \frac{4}{3}$

Modified Pigou's example

• A small change in cost function

Modified Pigou's example

- Nash equilibrium:
 - All traffic on the lower edge
 - Total cost: $1 \times 1^1 = 1$

Modified Pigou's example

- When is the cost optimized?
 - $\epsilon \in [0,1]$: traffic on upper edge
 - Cost = $\epsilon + (1 \epsilon)^{p+1}$
 - Minimized when $\epsilon = 1 (p+1)^{-\frac{1}{p}}$
- As $p \to \infty$, optimal cost $\to 0$

Modified Pigou's example

 $PoA = \frac{f(worst \ equilibrium)}{f(optimal \ outcome)}$

As $p \to \infty$

• $f(optimal outcome) \rightarrow 0$

 $\circ PoA \rightarrow \infty$

Is That a Game?..

Familiar?? Congestion games!!

Atomic routing games

- Some players
- Each controls a non-negligible
 fraction of traffic

Nonatomic routing games

- Some players
- Each controls a negligible
 fraction of traffic

Oligopoly

Perfect competition

Marginal Social Cost

- Increase in total cost due to additional traffic
- Cost of x traffic: $x \cdot c(x)$
- Marginal cost function: $c^*(x) = (x \cdot c(x))' = c(x) + x \cdot c'(x)$

Potential Function

• Use of integration in nonatomic games

- **General Equilibrium Properties**
- Nonatomic games
- At least one equilibrium flow
- Uniqueness of equilibrium

Atomic games

- Equilibrium flow exists
 - If all players control the same amount of traffic
 - With affine cost functions

Braess's Paradox in nonatomic

routing games

• 1 unit of total traffic

Braess's Paradox in nonatomic

routing games

- Equilibrium:
 - $s \rightarrow v \rightarrow t$: 0.5 traffic
 - $s \rightarrow w \rightarrow t$: 0.5 traffic

• Cost = 1.5

Braess's Paradox in nonatomic

routing games

Braess's Paradox in nonatomic

routing games

• Equilibrium:

$$\circ s \rightarrow v \rightarrow w \rightarrow t:1$$

 \circ Cost = 2

•
$$PoA = \frac{2}{1.5} = \frac{4}{3}$$

Price of anarchy

- Maximized in Pigou-like examples
- Dependent on "nonlinearity" of cost functions
 - Pigou bound: tight upper bound
- Independent of
 - Network size or structure
 - Number of different source-sink pairs

Polynomial degree $\leq p$ Non-negative coefficients

$$\begin{bmatrix} 1 - p \cdot (p+1)^{-\frac{p+1}{p}} \end{bmatrix}^{-1} \approx \frac{p}{\ln p}$$
$$p = 1 \Rightarrow \frac{4}{3}$$

Applications

Other games:

- Facility location
 - Pure Nash equilibrium exists
 - Price of anarchy is small
- Load balancing
 - Makespan scheduling
- Resource allocation
 - PoA as a design metric

Reduce PoA:

- Marginal cost pricing
 - Pigouvian taxes
- Capacity augmentation

Summary

Price of anarchy quantifies the inefficiency of equilibrium

• Ratio of "social cost" of worst equilibrium over optimum

Selfish routing is intensively studied

- Equilibrium flow always exists in nonatomic routing games
- Pigou's example shows that PoA can be bounded or unbounded
- PoA depends on cost functions but not on other network properties

PoA presents in the study of other domains

References

D. Braess. On a paradox of traffic planning. Transport. Sci., 39(4):446-450, 2005.

E. Koutsoupias and C. H. Papadimitriou. Worst-case equilibria. In Proc. 16th Symp. Theoretical Aspects of Computer Science, LNCS 1563:404-413, 1999.

N Nisan, T Roughgarden, E. Tardos, V. V. Vazirani (eds.). Algorithmic Game Theory. Cambridge University Press, 2007.

A. C. Pigou. The Economics of Welfare. Macmillan, 1920.

C. H. Papadimitriou. Algorithms, games, and the Internet. In Proc. 33rd Symp. Theory of Computing, pp 749-753, 2001.

T. Roughgarden. The price of anarchy is independent of the network topology. J. Comput. System Sci., 67(2):341-364, 2003.

T. Roughgarden. Selfish Routing and the Price of Anarchy. MIT Press, 2005.

T. Roughgarden and E. Tardos. How bad is selfish routing? J. ACM, 49(2):236-259, 2002.