Complexity of Nash Equilibrium

David R.M. Thompson
(+ slides by Constantinos Daskalakis)

January 17, 2013
Outline

1 Complexity Recap
2 Nash
3 Reduction from Nash
4 Reduction to Nash
Complexity Recap

Definition (P)
The set of decision problems that can be solved in polynomial time by a deterministic Turing machine. e.g., is this list sorted?

Definition (NP)
The set of decision problems that can be solved in polynomial time by a non-deterministic Turing machine. e.g., is this boolean formula satisfiable?
Definition (Reduction)

Transforming one problem into another (using a deterministic Turing machine).

\[A \leq_P B \] means “Problem \(A \) can be solved using an algorithm for problem \(B \), with polynomial additional cost.”

- \(A \leq_P B \) and \(B \in NP \) implies \(A \in NP \).
Definition (X-hard)

A problem is X-hard iff it is at least as hard as any problem in X.

- $A \leq_P B$ and A is NP-hard implies B is NP-hard.

Definition (X-complete)

A problem is X-complete iff it is in X and X-hard.

- $A \leq_P B$, $B \leq_P A$ and A is NP-complete implies B is NP-complete.
Where does Nash fit in?

- As a decision problem, it’s easy:
 Does this game have a Nash equilibrium? Yes!
Where does Nash fit in?

- As a **decision problem**, it’s easy:
 Does this game have a Nash equilibrium? Yes!

- Ask slightly more and it becomes NP-complete, e.g.,
 - Does this game have more than one Nash equilibrium?
 - Does this game have a Nash equilibrium equilibrium where action a_i is played with non-zero probability?
 - Does this game have a Nash equilibrium equilibrium where action a_i is played with zero probability?

- But what’s the complexity of **finding** a Nash equilibrium?
Where does Nash fit in?

- What’s the complexity of finding a Nash equilibrium?

Definition (FNP)

The set of function problems that can be solved in polynomial time by a non-deterministic Turing machine. e.g., find a satisfying assignment for this boolean formula.

- ϵ-NASH \in FNP.
Where does Nash fit in?

- What’s the complexity of finding a Nash equilibrium?

Definition (FNP)

The set of function problems that can be solved in polynomial time by a non-deterministic Turing machine. e.g., find a satisfying assignment for this boolean formula.

- ϵ-NASH \in FNP.

- What’s that ϵ mean?
Where does Nash fit in?

- What’s the complexity of finding a Nash equilibrium?

Definition (FNP)

The set of function problems that can be solved in polynomial time by a non-deterministic Turing machine.

e.g., find a satisfying assignment for this boolean formula.

- ϵ-NASH \in FNP.
- What’s that ϵ mean?
- Where did the ϵ come from? Games with more than two players might not any rational-valued Nash equilibrium.
Where does Nash fit in?

Definition (PPAD)

The set of function problems where a solution is guaranteed to exist, by a parity argument on a directed graph.

- $\text{PPAD} \subseteq \text{FNP}$.

Theorem (Daskalakis et al, Chen & Deng)

ϵ-Nash is PPAD-complete.
Where does Nash fit in?

Definition (PPAD)
The set of function problems where a solution is guaranteed to exist, by a parity argument on a directed graph.

- $\text{PPAD} \subseteq \text{FNP}$.

Theorem (Daskalakis et al, Chen & Deng)
ϵ-Nash is PPAD-complete.

Agenda:
- Show ϵ-NASH \leq_P BROUWER (PPAD-complete)
 i.e., ϵ-NASH \in PPAD
- Show BROUWER \leq_P ϵ-NASH
 i.e., ϵ-NASH is PPAD-hard.
Outline

1. Complexity Recap
2. Nash
3. Reduction from Nash
4. Reduction to Nash
Nash’s Theorem “⇒” Nash \in PPAD

<table>
<thead>
<tr>
<th>Kick</th>
<th>Left</th>
<th>Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dive</td>
<td>$1, -1$</td>
<td>$-1, 1$</td>
</tr>
<tr>
<td>Left</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right</td>
<td>$-1, 1$</td>
<td>$1, -1$</td>
</tr>
</tbody>
</table>

Penalty Shot Game

$f: [0,1]^2 \rightarrow [0,1]^2$, cont. such that fixed point \equiv Nash eq.
Nash’s Theorem “⇒” NASH ∈ PPAD

Nash

Penalty Shot Game

Brouwer

Kick

Dive

Left

Right

Penalty Shot Game

Pr[Right]
Nash’s Theorem “\implies” NASH \in PPAD

Penalty Shot Game

<table>
<thead>
<tr>
<th></th>
<th>Kick</th>
<th>Dive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>Right</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
</tr>
</tbody>
</table>

fixed point
Nash’s Theorem “⇒” NASH \in PPAD

Penalty Shot Game

\begin{array}{c|cc}
\text{Kick} & \frac{1}{2} & \frac{1}{2} \\
\hline
\text{Dive} & \text{Left} & \text{Right} \\
\hline
\text{Left} & 1, -1 & -1, 1 \\
\hline
\text{Right} & -1, 1 & 1, -1 \\
\end{array}

\epsilon\text{-fixed point}
Outline

1. Complexity Recap
2. Nash
3. Reduction from Nash
4. Reduction to Nash
PPAD-Hardness of NASH [DGP ’05]

Nash \leftrightarrow Brouwer

- Game-gadgets: games acting as arithmetic gates

\textit{Nash} game whose Nash equilibria are close to the fixed points of \(f \)

\(f: [0,1]^3 \rightarrow [0,1]^3 \), continuous & p.w.linear
Games that do real arithmetic

Two strategies per player, say \{0,1\};

- Mixed strategy \equiv a number in [0,1] (probability of playing 1)

\[w \text{ is paid:} \]
- $ p_x \cdot p_y \text{ for playing 0} \\
- $ p_z \text{ for playing 1} \\

\[z \text{ is paid } 1 - p_w \text{ for playing 1} \]

\[p_z = p_x \cdot p_y \]
Games that do real arithmetic

\begin{align*}
\text{for playing 0} \\
\text{for playing 1}
\end{align*}

<table>
<thead>
<tr>
<th></th>
<th>y plays 0</th>
<th>y plays 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>x plays 0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>x plays 1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

w's payoff

\begin{align*}
\text{w is paid:} \\
- \$ p_x \cdot p_y \text{ for playing 0} \\
- \$ p_z \text{ for playing 1}
\end{align*}

z is paid:

\begin{align*}
- \$1 - p_w \text{ for playing 1} \\
- \$0.5 \text{ for playing 0}
\end{align*}

p_z = p_x \cdot p_y
PPAD-Hardness of NASH [DGP ’05]

- use game-gadgets to simulate \(f \) with a game

- Topology: noise reduction

\[f: [0,1]^3 \rightarrow [0,1]^3, \text{ continuous \\& p.w.linear} \]
Reduction to 3 players [Das, Pap ‘05]

multiplayer game
Reduction to 3 players [Das, Pap ‘05]

multiplayer game

― "represents" red players
― "represents" blue players
― "represents" all green players

Coloring: no two nodes affecting one another, or affecting the same third player use the same color;
payoffs of the green lawyer for representing node \(u \)

 Wishful thinking: The Nash equilibrium of the lawyer-game, gives a Nash equilibrium of the original multiplayer game, after marginalizing with respect to individual nodes.

But why would a lawyer represent every node equally?
Enforcing Fairness

律师们在一边玩一场高风险的游戏，他们代表的节点。
PPAD-hardness of NASH

Generic PPAD

Embedded PPAD

SPERNER

BROUWER

0^n

p.w. linear

BROUWER

multi-player NASH

[pap '94]

[DGP '05]

4-player NASH

[DGP '05]

3-player NASH

[DGP '05]

2-player NASH

[DGP '05]

[DGP '05]

[DP '05]

[CD'05]

[CD'05]
Reducing to 2 players [Chen, Deng ’05]

Based on the following simple, but crucial observation:
- the expected payoff of each lawyer is additive w.r.t. the nodes that another lawyer represents;
- hence, if two nodes affect the same third node, they don’t need to have different colors.

Coloring: no two nodes affecting one another, or affecting the same third player use the same color;

Two colors suffice to color the multiplayer game in the [DGP 05] construction.

2 lawyers are enough