
Mixed Strategies and Nash Equilibrium

Game Theory Course:
Jackson, Leyton-Brown & Shoham

Game Theory Course: Jackson, Leyton-Brown & Shoham Mixed Strategies and Nash Equilibrium.



.

Mixed Strategies

• It would be a pretty bad idea to play any deterministic strategy
in matching pennies

• Idea: confuse the opponent by playing randomly
• Define a strategy si for agent i as any probability distribution
over the actions Ai.
• pure strategy: only one action is played with positive probability
• mixed strategy: more than one action is played with positive

probability
• these actions are called the support of the mixed strategy

• Let the set of all strategies for i be Si

• Let the set of all strategy profiles be S = S1 × . . . × Sn.

Game Theory Course: Jackson, Leyton-Brown & Shoham Mixed Strategies and Nash Equilibrium.
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Utility under Mixed Strategies

• What is your payoff if all the players follow mixed strategy
profile s ∈ S?
• We can’t just read this number from the game matrix anymore:

we won’t always end up in the same cell

• Instead, use the idea of expected utility from decision theory:

ui(s) =
∑

a∈A

ui(a)Pr(a|s)

Pr(a|s) =
∏

j∈N

sj(aj)

Game Theory Course: Jackson, Leyton-Brown & Shoham Mixed Strategies and Nash Equilibrium.
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Best Response and Nash Equilibrium

Our definitions of best response and Nash equilibrium generalize
from actions to strategies.
.
Definition (Best response)
..
.s

∗
i ∈ BR(s−i) iff ∀si ∈ Si, ui(s

∗
i , s−i) ≥ ui(si, s−i)

.
Definition (Nash equilibrium)
..
.s = ⟨s1, . . . , sn⟩ is a Nash equilibrium iff ∀i, si ∈ BR(s−i)

.
Theorem (Nash, 1950)
..
.Every finite game has a Nash equilibrium.

Game Theory Course: Jackson, Leyton-Brown & Shoham Mixed Strategies and Nash Equilibrium.
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Computing Mixed Nash Equilibria
Battle of the Sexes

60 3 Competition and Coordination: Normal form games

Rock Paper Scissors

Rock 0 −1 1

Paper 1 0 −1

Scissors −1 1 0

Figure 3.6 Rock,Paper, Scissors game. 

 B         F

B 2, 1 0, 0

F 0, 0 1, 2

Figure 3.7 Battleof the Sexes game.

3.2.2 Strategies in normal-form games

We have so far defined the actions available to each player in a game, but not yet his
set ofstrategies, or his available choices. Certainly one kind of strategy is to select
a single action and play it; we call such a strategy apure strategy, and we will usepure strategy
the notation we have already developed for actions to represent it. There is, however,
another, less obvious type of strategy; a player can choose to randomize over the set of
available actions according to some probability distribution; such a strategy is called
a mixed strategy. Although it may not be immediately obvious why a player shouldmixed strategy
introduce randomness into his choice of action, in fact in a multi-agent setting the role
of mixed strategies is critical. We will return to this when we discuss solution concepts
for games in the next section.

We define a mixed strategy for a normal form game as follows.

Definition 3.2.4 Let (N, (A1, . . . , An), O, µ, u) be a normal form game, and for any
setX let Π(X) be the set of all probability distributions overX. Then the set ofmixed
strategiesfor player i is Si = Π(Ai). The set ofmixed strategy profilesis simply themixed strategy

profiles Cartesian product of the individual mixed strategy sets,S1 × · · · × Sn.

By si(ai) we denote the probability that an actionai will be played under mixed
strategysi. The subset of actions that are assigned positive probability by the mixed
strategysi is called thesupportof si.

Definition 3.2.5 Thesupportof a mixed strategysi for a player i is the set of pure
strategies{ai|si(ai) > 0}.

c©Shoham and Leyton-Brown, 2006

• It’s hard in general to compute Nash equilibria, but it’s easy
when you can guess the support

• For BoS, let’s look for an equilibrium where all actions are part
of the support

Game Theory Course: Jackson, Leyton-Brown & Shoham Computing Mixed Nash Equilibrium (1).
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• Let player 2 play B with p, F with 1 − p.
• If player 1 best-responds with a mixed strategy, player 2 must

make him indifferent between F and B (why?)

u1(B) = u1(F )

2p + 0(1 − p) = 0p + 1(1 − p)

p =
1

3

Game Theory Course: Jackson, Leyton-Brown & Shoham Computing Mixed Nash Equilibrium (1).
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• Likewise, player 1 must randomize to make player 2 indifferent.
• Why is player 1 willing to randomize?

• Let player 1 play B with q, F with 1 − q.

u2(B) = u2(F )

q + 0(1 − q) = 0q + 2(1 − q)

q =
2

3
• Thus the mixed strategies (2

3
, 1

3
), (1

3
, 2

3
) are a Nash equilibrium.

Game Theory Course: Jackson, Leyton-Brown & Shoham Computing Mixed Nash Equilibrium (1).
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Interpreting Mixed Strategy Equilibria

What does it mean to play a mixed strategy? Different
interpretations:
• Randomize to confuse your opponent

• consider the matching pennies example

• Randomize when uncertain about the other’s action
• consider battle of the sexes

• Mixed strategies are a concise description of what might happen
in repeated play: count of pure strategies in the limit

• Mixed strategies describe population dynamics: 2 agents chosen
from a population, all having deterministic strategies. MS gives
the probability of getting each PS.

Game Theory Course: Jackson, Leyton-Brown & Shoham Computing Mixed Nash Equilibrium (1).
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Example - Soccer Penalty Kicks

Kicker/Goalie Left Right
Left 0, 1 1, 0
Right 1, 0 0, 1

Game Theory Course: Jackson, Leyton-Brown & Shoham Example: Mixed Strategy Nash.
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Example - Soccer Penalty Kicks

Kicker/Goalie Left Right
Left 0, 1 1, 0
Right .75, .25 0, 1

Game Theory Course: Jackson, Leyton-Brown & Shoham Example: Mixed Strategy Nash.
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Hardness beyond 2 × 2 games
Algorithms

Two example algorithms for finding NE
• LCP (Linear Complementarity) formulation

• [Lemke-Howson ’64]

• Support Enumeration Method
• [Porter et al. ’04]

Game Theory Course: Jackson, Leyton-Brown & Shoham Hardness Beyond 2 × 2 Games.
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The Lemke-Howson Algorithm

CPSC 532L
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2 Lemke-Howson Algorithm
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LP Lemke-Howson

Linear Programming

A linear program is defined by:

a set of real-valued variables

a linear objective function

a weighted sum of the variables

a set of linear constraints

the requirement that a weighted sum of the variables must be
greater than or equal to some constant

The Lemke-Howson Algorithm CPSC 532L, Slide 3



LP Lemke-Howson

Linear Programming

Given n variables and m constraints, variables x and constants w,
a and b:

maximize
n∑

i=1

wixi

subject to
n∑

i=1

aijxi ≤ bj ∀j = 1 . . .m

These problems can be solved in polynomial time using
interior point methods.

Interestingly, the (worst-case exponential) simplex method is
often faster in practice.

The Lemke-Howson Algorithm CPSC 532L, Slide 4
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LP Lemke-Howson

Two-player equilibrium constraints

∑

a2∈A2

u1(a1, a2)·s2(a2) + r1(a1) = U∗1 ∀a1 ∈ A1

∑

a1∈A1

u2(a1, a2)·s1(a1) + r2(a2) = U∗2 ∀a2 ∈ A2

∑

ai∈Ai

si(ai) = 1 ∀i ∈ N

si(ai) ≥ 0 ∀i ∈ N, ai ∈ Ai

ri(ai) ≥ 0 ∀i ∈ N, ai ∈ Ai

ri(ai)·si(ai) = 0 ∀i ∈ N, ai ∈ Ai

We can write down a set of constraints that a two player
strategy profile satisfies if and only if it is a Nash equilibrium.

The Lemke-Howson Algorithm CPSC 532L, Slide 6
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ri(ai) ≥ 0 ∀i ∈ N, ai ∈ Ai

ri(ai)·si(ai) = 0 ∀i ∈ N, ai ∈ Ai

U∗i is the utility of i’s best responses.
si(ai) is the probability that i plays ai.
ri(ai) is a “slack” variable.
Each ui(ai, a−i) is a constant.
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Two-player equilibrium constraints
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s1 and s2 are valid probability distributions.
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Slack variables ri(ai) are non-negative.
U∗1 is weakly greater than the EU of any of player 1’s actions,
given s2 . . .

and exactly equal to the EU of every action in the support.
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So we’re done! Or are we?

This requirement changes the problem from a linear program
to a linear complementarity program.
Unfortunately, there is no general algorithm for solving LCPs.
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LP Lemke-Howson

Mixed strategy labels

The Lemke-Howson algorithm is a specialized algorithm for solving
the previous LCP.
It uses a concept of labels on mixed strategies.

Definition (Labels)

Every possible mixed strategy si is given a set of labels
L(si) ⊆ A1 ∪A2. The strategy si has the following labels:

Every action ai ∈ Ai satisfying si(ai) = 0, and

Every action a−i ∈ A−i such that a−i ∈ BR−i(si).

A pair of strategies (s1, s2) is a Nash equilibrium iff it is
completely labelled: L(s1) ∪ L(s2) = A1 ∪A2.

The Lemke-Howson Algorithm CPSC 532L, Slide 7
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LP Lemke-Howson

Searching for a completely labelled pair

The Lemke-Howson algorithm can be understood as searching
the two spaces of labelled strategies for a fully-labelled pair.

When the game is nondegenerate∗, there are no strategies
with more labels than an agent has actions.

So a completely labelled pair of strategies must consist of a
pair that has no labels in common.

The Lemke-Howson Algorithm CPSC 532L, Slide 8



LP Lemke-Howson

Pivoting

The LCP formulation allows us to define a pivot operation,
which is able to take a labelled strategy and return a new one
that differs in exactly one label.

Basic strategy:
1 Start at the completely-labelled “synthetic equilibrium” (0,0).
2 Pivot to a new s1; its new label must duplicate a label of s2.
3 Repeat:

1 Pivot to a new strategy to remove the duplicated label (the
“leaving” label).

2 If the new label (the “entering” label) is a duplicate, continue.
3 Otherwise, the “missing” label must have been found. Halt.

The Lemke-Howson Algorithm CPSC 532L, Slide 9
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LP Lemke-Howson

Lemke-Howson properties

Only works on 2-player games. (why?)

Guaranteed to find at least one equilibrium.

Not guaranteed to find all equilibria.

May require exponentially many pivots.

Quite fast in practice.

The Lemke-Howson Algorithm CPSC 532L, Slide 10



Background SEM for AGGs Results

The basic idea behind SEM

If you “guess” the right support, finding an equilibrium only
requires solving a system of polynomial inequalities.

In practice, tools like MINOS [Murtagh, Saunders, 2010] solve
these systems quickly.

To find one (or all) Nash equilibra, just enumerate supports.
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Hardness beyond 2 × 2 games
Support Enumeration Method: Porter et al. 2004

• Step 1: Finding a NE with a specific support

∑

a−1∈σ−i

p(a−i)ui(ai, a−i) = vi ∀i ∈ {1, 2}, ai ∈ σi

∑

a−1∈σ−i

p(a−i)ui(ai, a−i) ≤ vi ∀i ∈ {1, 2}, ai /∈ σi

pi(ai) ≥ 0 ∀i ∈ {1, 2}, ai ∈ σi

pi(ai) = 0 ∀i ∈ {1, 2}, ai /∈ σi∑

ai∈σi

pi(ai) = 1 ∀i ∈ {1, 2}
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Background SEM for AGGs Results

The ideas that make SEM fast

S1={H} S1={T} S1={H,T}

S2={H} S2={T} S2={H,T}

(1) The size of the tree

(2) Dominance

(3) Test Given Support (TGS)
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