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Abstract

The study of multi-agent systems investigates the interaction between agents in the setting
where multiple agents exist and their behaviour affects each other’s. Because in most environ-
ments agents are not likely to know ahead of time what other agents will do, what the world
will be after the agents’ joint behaviour, or sometimes even the existence of other agents, it is
reasonable that they will try to learn from history so as to act in a way that is most beneficial
to them. Multi-agent learning (MAL) has emerged as a field at the intersection of multi-
agent systems and machine learning. It concerns the application of learning techniques to the
multi-agent setting. Over recent years, MAL has drawn significant attention from the research
communities of game theory and artificial intelligence (AI). This paper presents a survey of
recent work in the literature and integrates some comment and remarks from different papers
in an organized structure. Beyond this, we also discuss and compare the different remarks, and
offer our own thoughts about the work we survey and where the literature might head in the
future.

1 Introduction

Machine learning has seen a huge success in various domains, both in the academic community
where computational models have been built to advance the artificial intelligence research and in
many commercial services or products where ranking algorithms and recommender systems are
capable of providing helpful information to the customers. It is thus a natural move to introduce
learning agents in the multi-agent setting. Multi-agent learning (MAL) has emerged as a field at the
intersection of multi-agent systems and machine learning. From a simple viewpoint, it just concerns
the application of learning techniques to the multi-agent settings. Nevertheless, even the attempts
to apply learning techniques seem to pose a considerable number of problems, among which one
of the most fundamental, as argued by Shoham et al., is the evaluation criteria [7]. That is, after
applying some learning rule in a multi-agent system, how do we assess and justify its success or
simply make sense of it? In this paper, we present a survey of recent work in the literature of MAL,
including the introduction of some most common and widely studied MAL techniques. We note
here that the survey presented in the paper is far from comprehensive of the whole literature and is
largely based on the work in [1, 5, 6, 7], most of which are also surveys or introductions to the field
of MAL. However, we emphasize more on the remarks that other researchers have about recent



work in MAL and their relations to other fields of study. In particular, Shoham et al. identify
distinct goals pursued in MAL research [7], and Frudenberg et al. comment on their work from
an economist’s perspective [4]. We involve ourselves in the discussion and offer our thoughts when
comparing their comment and observations. In addition, whenever appropriate we try to draw
relevance to general machine learning techniques or concepts.

In presenting the survey, we take a rather game-theoretic perspective, just as what most work
in the literature does. In the next section, we give the necessary background in learning and
game-theoretic formalism. In Section 3, we survey some most widely studied learning techniques in
multi-agent systems. Instead of having a separate section for all the comment and discussion, we
discuss different researchers’ comment and offer our own where appropriate along the way. Similar
to most other surveys, our presentation remains a relatively high-level view of the work rather than
delving into the detailed technicality.

2 Background

In this section, we provide some necessary vocabulary and definitions in game theory, based on
which the work in the literature is presented. We also give a brief overview of learning, including
the various possible issues in multi-agent settings that make MAL intrinsically more complicated.

2.1 Game-theoretic formalism

Here we formalize the setting from a game-theoretic perspective, in which we present and discuss
the multi-agent learning techniques. We ground our discussion in the simplest normal-form game,
in which all agents simultaneously take an action and end up in a certain outcome according to
their joint actions. Then each agent receives a payoff based on his utility function and the outcome.
Despite its simplicity, many scenarios in the multi-agent setting can be described by a series of the
one-shot normal-form games, and it is also the framework in which most work in the multi-agent
systems take place. We now define a stochastic game, which is a series of normal-form games.

Definition A stochastic game is a tuple (N, S, A, U, P), where N denotes a set of n agents, S a
set of n-agent normal-form stage games, A = (A4, Ag, ..., A,) with A; specifying the set of actions
available for agent ¢ (Here we implicitly assume that each agent has the same action space in all
stage games), U = (Uy,Us, ...,Uy,) with U; : S x A — R giving agent i’s immediate payoff function
for each stage game, and P : S x A — TI(S) specifying the transition probabilities after each stage
game.

When there is only one stage game in S, a stochastic game reduces to a repeated game (and
in this case, the transition probabilities are irrelevant). On the other hand when there is only one
agent at play, a stochastic game reduces to a Markov decision problem (MDP), which has been the
fundamental setting leading most of the work in artificial intelligence.

We then define a symmetric game and introduce the term self-play as we shall refer to both in
the following discussion of learning in games.

Definition A symmetric game is two-player normal-form game of the form shown in Figure 1,
where both players have the same strategy space (but they can in fact have more than two actions),
and the payoff for playing a particular strategy is independent of which player does so.
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Figure 1: Two-player symmetric game: the payoff for playing a
particular strategy is independent of the player.

Terminology Self-play refers to the situation in which all agents employs the same learning mech-
anism in a multi-agent system.

We highlight and hope it is obvious that self-play certainly does not mean that all agents always
perform the same action in each stage game.

2.2 Overview of learning

While many single-agent learning algorithms have proved successful in the field of artificial intel-
ligence, their usefulness in the multi-agent setting can be hardly justified. In some context, it is
even quite difficult to define what constitutes learning. From the viewpoint of machine learning (in
the single-agent setting), most often learning concerns the ability to predict. We normally iden-
tify ”learning” if one is capable of, based on what he has observed in the history (e.g. training
examples), correctly predicting the future (e.g. unseen test examples). This actually shares the
same concept with Foster et al.’s definition in the game-theoretic setting that players ”learn” if
they eventually succeed in predicting their opponents’ behaviour with high degree of accuracy [2].
However, the concept of learning becomes much more complicated in the multi-agent setting. The
fundamental underlying reason is that in the existence of other agents who are also learning, an
agent’s learning process will affect the other agents’ and vice versa. To paraphrase Young’s words,
when agent A is trying to learn about agent B and behave according to what A learns. Since B is
also learning and observes A’s behaviour, B’s behaviour can change as a result of A’s attempts to
learn it [10].

Another source of the conceptual complexity of MAL is the inseparability of learning and teach-
ing [7]. That is, in the multi-agent setting, agents are inherently learning and teaching at the same
time. To make the concept more concrete, consider the repeated version of the normal-form stage
game shown in Figure 2.

In the stage game, the row player has a strictly dominant strategy D (and so U is strictly
dominated). If the row player always plays his dominant strategy in the repeated game, the col-
umn player will most likely continue responding with L, ending up in the outcome (D, L) forever.
However, if the row player repeatedly plays U for a long while, the column player will eventually
start responding with R, resulting in the outcome (U, R), which is better for both players. In this
case, knowing that the column player’s behaviour depends on his learning about the row player,
the row player can actually teach the column player by playing his dominated strategy in the stage
game. On the other hand, Fudenberg et al. also argue that this kind of teaching plays no role in
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Figure 2: Stackelberg stage game: the first number in each cell
denotes the payoff of the row player, whereas the second number
represents that of the column player.

certain environments [4]. Consider, for example, that in a large but finite population, each agent
is repeated matched with another at random to play a single-shot normal-form game, and the only
thing they observe is the actions and payoffs in the match. If the population is sufficiently large,
then the agent is unlikely to be matched with the current opponent for a long time. Therefore, the
"teaching” does not appear very relevant in the case. The key idea we highlight here is that the
issues in MAL depend heavily on the context in which the problems are addressed, and we must
be very cautious when considering them.

The context also tells how we should model different scenarios in the multi-agent setting, includ-
ing whether agents can observe their own payoffs, whether they can observe the opponents’ payoffs
or actions, and whether they know the transition probabilities in the case of a stochastic game. In
the rest of the paper, we concentrate on the setting in which the payoffs and actions are observable
by all the agents since much of the current work on MAL adopts this setting, and many scenarios
can also be reasonably modelled in this setting. We also restrict the discussion in two-player games
for simplicity.

3 MAL in games

We follow Shoham et al.’s categorization of learning techniques depending on whether agents ex-
plicitly model the opponents’ strategies when deciding what actions to take [5]. We describe some
learning techniques in the two distinct categories: model-based learning and model-free learning.
Then we introduce social learning, which concerns only population statistics under different learn-
ing rules, rather than considering all the individual behaviour and payoffs.

3.1 Model-based learning

In model-based learning, an agent assumes that the opponent uses a unknown stationary strategy
which is fixed over repeated plays of the stage game. So the agent simply tries to model the
opponent’s fixed strategy based on the history of the repeated plays. The model-based learning
has, essentially in Shoham et al.’s language [7], the following scheme:

1. Initialize some model of the opponent’s strategy.

2. Play a best response to the assessed model of the opponent.



3. Observe the opponent’s actual action and update the assessed model of his strategy.

4. Go to step 2.

One of the earliest and simplest model-based learning rules is the fictitious play, in which the
model of the opponent’s strategy purely corresponds to the frequency of each action played in the
history. That is, the opponent’s strategy is modelled as (P(a1), P(ag),...), where

w(a)
Yareaw(d@)

and w(a) denotes the number of times that action a has been played in the history. For instance,
if the column player has played (R, R, L, R) in the first four rounds of the repeated game described
in Figure 2, then in the fifth round, the row player will model the column player’s strategy as
the mixed strategy (R : 0.75,L : 0.25). Another more complex form of model-based approach
is Bayesian learning. Unlike fictitious play, in Bayesian learning scheme, agents do not model the
opponents as having a stationary strategy but any repeated-game strategies. That is, agents’ beliefs
about the opponents can include any probability distribution over the set of possible repeated-game
strategies. After each round of the stage game, agents use Bayesian updating to update their beliefs
about the opponents: given the history h, agent i assigns a probability of the opponent playing a
particular strategy s_; € S_; to be

P(a) = (1)
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We ourselves have some favour to Bayesian learning from the neuroscience’s perspective since
it has been studied and well accepted that Bayesian conditioning (on prior belief) indeed captures
the way humans reason about the world.

Although Shoham et al. argue that those successful machine learning techniques in single-agent
settings in Al should not be expected a priori to prove relevant in the multi-agent setting due to
much of the inherent complicatedness of MAL [7], we believe these machine learning algorithms
definitely will not be completely irrelevant. As such we suggest that more sophisticated statistical
learning approach may find its stand in the multi-agent setting too. Here we adapt, without further
analyzing, a statistical learning rule which tries to exploit the temporal locality in the history of the
opponent’s plays (this comes to our mind when surveying the literature) to the multi-agent setting.
First, we specify a number k that measures the length of history the agents remember back from
now. When modelling the opponent’s strategy in the t** round of the repeated game, an agent
looks into the history, finds all instances of k consecutive plays matching that from round ¢t — k
to round ¢t — 1, and forms the frequency of actions played in the history conditioned on that the
previous k plays match the pattern from round ¢ — k to round ¢t — 1 as the opponent’s strategy at
round t. To illustrate with an example. Consider again the repeated version of the game shown in
Figure 2. Assume the column player has an action history h = (..., R, L, R) and k = 3. To model
the opponent’s strategy, the row player finds all instances of 3 consecutive plays in h matching the
pattern (R, L, R) and looks at the next play following the pattern in these instances, using these to
form the conditional probability distribution as the opponent’s strategy.

Pi(s—i | h) = (2)



3.2 Model-free learning

Using model-free approaches, agents do not attempt to learn a model of the opponents’ strategies
but rather try to learn to maximize their own utilities over all possible actions over time. Before
introducing any learning algorithm, we first cover the value iteration method for solving a known
MDP (i.e. the payoffs and transition probabilities are available to the agent), based on which most
learning techniques develop. The value iteration proceeds by iteratively updating a value function
V : S — R with the Bellman equation:
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where [ denotes the discount factor for future payoffs in the MDP. This method guarantees
convergence to the optimal V*, which gives the maximum utility value starting in the given state
s (i.e. the starting stage game). Building on the basic idea of value iteration, the Q-learning
algorithm can be used to solve for the optimal policy in a unknown MDP (i.e. payoffs and transition
probabilities are unknown to the agent). With arbitrarily initialized functions @ : S x A — R and

V : 8 — R, the algorithm proceeds by the iterative updates:
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st and a; are the current state at time ¢ and the selected action at time ¢, respectively. a; denotes
the learning rate. Watkins et al. prove the convergence of the Q-learning algorithm to the @* and
V* values of the optimal policy if every action-state pair is eventually sampled infinitely many times,
and the learning rate «; satisfies certain reasonable constraints [8]. A lot of attempts have been
made to extend the Q-learning to multi-agent stochastic games (recall that an MDP is a single-
agent stochastic game), yet not too much success have been seen in general games. Nevertheless,
researchers are able to use variants of Q-learning algorithms to solve some special cases of stochastic
games, namely pure-coordination (a.k.a common-payoff) games and pure-competition (a.k.a zero-
sum) games.

3.3 Social learning

We feel it is worth devoting a separate sub-section to the discussion of social learning, in which
models are developed for the learning process of population of agents rather than that between
individual agents. The term social learning is borrowed from the biological literature, and much
related work in the MAL field is motivated by biological inspirations. In particular, we present the
widely adopted replicator dynamics, a model originated from population biology to simulate the
process of biological evolution. The model assumes a homogeneous population of agents, in which
agents are continually paired at random to play a symmetric game, receiving some immediate
payoffs. Then agents ”reproduce” in proportion to the payoffs they receive in the game. The
mathematical model is formally described as follows. Let S be the set of possible (pure) strategies
and u : S XS — R be the payoff function of a given symmetric game. The fraction of agents playing
strategy s at time ¢ is
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where ¢;(s) denotes the number of agents playing strategy s at time ¢t. The expected payoff to
any agent playing strategy s at time ¢ is then

ur(s) = > 0u(8)u(s, 3). (6)

ses

0:(s) = (5)

The change in population, or the reproduction rate, of agents playing strategy s at time ¢ is
defined to be proportional to the expected payoff of playing strategy s at current time, that is,

dt(dr(s)) = dr(s)ur(s), (7)

or equivalently,

br+1(8) = @ (8)[1 + ue(s)]. (8)

From this formulation, we see that the number of agents playing some particular strategy will
keep increasing as long as the expected payoff for playing that strategy is greater than zero. However,
in this population model or any social learning scheme, we only concern the relative proportion of
agents playing some particular strategy in the entire population. Differentiation on both sides of
(5) results in the change in the fraction of agents playing strategy s at time ¢:

dt(0:(s)) = 01(s)[ur(s) — ], (9)

where @; = ) ¢ 0:(s)us(s) is defined to be the average expected payoff of the entire population
at time t. We now notice that the fraction of agents playing a particular strategy in the population
will only increase if the expected payoff for playing that strategy is greater than the current average
expected payoff.

Although much of recent work in the MAL field does not focus on this framework, we believe
that there are lessons to be learned (sorry for the pun) in the sense that the social learning scheme
has successfully adopted biological inspiration. Just as that adaptation of biological models has
contributed a great deal to the advances of machine leaning and AI in general (e.g. the well-known
neural network) and indeed many researchers consider that further success of Al requires strong
collaboration of machine learning, neuroscience, and other biological sciences, it seems quite possible
that there is an important place for them in the multi-agent setting too. Alonso et al. mention
some social learning mechanisms from biology that can be implemented in software agents, and we
refer interested readers to [1].

4 Evaluation criteria

We have intentionally left out any evaluation of learning algorithms in the above presentation.
Here we give a more concentrated discussion. Shoham et al. summarize some typical results in the
literature regarding the MAL algorithms [7], and we discuss two of them while drawing relevant
remarks from other researchers. The first result is the convergence of the strategy profile to an
equilibrium of the stage game in self-play, and this is probably the most common and widely
adopted evaluation criterion in game theory. As an example, it is shown that if fictitious play



converges to a pure strategy profile, then it must converge to a Nash equilibrium [3]. Moreover,
while fictitious play does not converge to a Nash equilibrium in general, it has been shown to
converge to an equilibrium in some special games (e.g. zero-sum games). However, Shoham et al.
and Fudenberg et al. share the concern about the ”default blind adoption of equilibria as the driving
concept in complex games” [4, 7]. We especially agree with Fudenberg that it does not make much
sense to make convergence to equilibrium the main factor used to justify interest in a given learning
rule [4]. That is, we question the analysis of convergence behaviour by asking — what happens if
a learning algorithm does not converge in self-play? and even if it does, which equilibrium does
it converge to when there are many? On the other hand, we recognize that convergence property
retains its value in the sense that an equilibrium represents some stable situation in which every
agent is best responding. So, this might be more relevant to mechanism design particularly if the
designer has some ways of providing a driving dynamics that gives rise to the equilibrium — for
instance, if the designer has some ways of making agents naturally adopt a learning rule.

The second evaluation criterion is the successful learning of the opponent’s strategy. To us, this
seems a more sensible criterion from the general sense of learning. Actually, Bayesian learning is
shown to converge to the correct model of the opponent’s strategy under some conditions. However,
these conditions are very strong — so strong that they can hardly be satisfied in general unless
agents have enough prior knowledge of the opponent’s strategy, which is what they try to learn.
Even more unfortunately, Foster et al. prove an uncertainty principle which basically says that an
rational agent is impossible to learn to predict the opponent’s behaviour if the agent is sufficiently
ignorant of the opponent’s payoff functions [2]. Young then suggests to get around the strongly
negative result by relaxing rationality [10]. That is, agents are not perfectly rational and do not
(strictly) best respond to their assessed model of the opponent’s strategy. Without discussing the
details of Young’s proposed method, we argue that the concept of relaxing perfect rationality makes
sense to us. To address our point, we draw relevance to [9], in which Wright et al show that (Nash)
equilibria do not provide a good prediction of actual human play in normal-form games and that
other behavioural models giving up perfect rationality can do better at predicting. While this
may not appear directly related, we do feel that there is some underlying idea bridging the two
discussions.

One final point that we stress is Shoham et al.’s proposed empirical evaluation to complement
the formal analysis [7]. Perhaps from more of a computer scientist’s perspective, we support that
empirical evaluation of learning algorithms be an alternative when formal analysis does not give
satisfactory results. While not overlooking the strength of formal analysis, we somehow believe that,
like in many aspects of computational sciences, the values of empirical performance may outweigh
that of nice formal properties of a learning algorithm in many scenarios in the multi-agent setting.

5 Conclusion

This paper surveys some recent work in MAL and presents a very brief introduction to certain
MAL algorithms. It also reviews and discusses the remarks from different researchers about the
work in the field. We see MAL as a natural extension of machine learning or single-agent artificial
intelligence in general. As such we believe that the field may also benefit from the incorporation
with neuroscience and other biological sciences. Meanwhile, we must be very careful in justifying
the use of any learning technique in the multi-agent setting and be open to assess its value under
various appropriate criteria.
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