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Abstract

Smart grid, which consists of many small microgrids, leads to a

more stable and secure grid. In this paper, we proposed a game the-

oretic approach using a novel combinational pricing signal for the de-

mand side management in a microgrid. We classified the appliance in

a smart grid into appliance with elastic energy demand and appliance

with inelastic appliance. We use game-theoretic approach to analyze

the interaction between the microgrid operator and end users as well

as among end users themself. We formulate the problem as a single

leader, multiple followers Stackelberg game. An unique Stackelberg-

Nash equilibrium is derived under two-fold pricing at first and then

extended to case of uniform pricing scheme.

1 Introduction

Smart grid, which uses two-way flows of electricity and information to
make the energy generation, delivery and consumption more automated, re-
liable and efficient, is regarded as the next generation power grid. Instead
of conveying power from a few centralized generators to many end-users in
a traditional power grid, Smart grid typically use distributed energy genera-
tion [1] with renewable resources to make the grid more secure, efficient and
”green”.

A distributed grouping of electricity generation and loads is called mi-
crogrid [2]. A microgrid usually connects to a traditional centralized grid
(macrogrid). The energy generation in the microgird could be renewable
energy resources such as solar panels and small wind turbines for the envi-
ronmental friendly purpose. However, these renewable energy resources are
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Figure 1: The infrastructure of microgrid system

quite unstable [3]. Consequently, an important goal for the microgrid oper-
ator is to keep the balance between the energy generation and demand.

Besides traditional technology to adjust the energy generation such as dis-
patching or energy storage in microgrid, Demand Side Management (DSM)
could also contribute to keep the balance between generation and demand
[4]. Among various DSM methods such as TOU and intentionally blackout,
real-time pricing is one of the most important DSM strategies. It can be used
to achieve different objectives. [4] sets the real-time price to be marginal cost
of the energy generation so that the energy demand is shaped and the social
welfare is maximized. [5] calculates the optimal real-time pricing based on
utility maximization. [6] models the energy retailer as a self-interest agent
which uses the real-time pricing to maximize profit for itself. However, dif-
ferent goals sometimes contradict with each other. In this paper, we use a
sophisticated pricing to make a tradeoff between two goals: profit maximiza-
tion and keeping match between generation and consumption. We model
the microgrid as a subscriber of a macrogrid. Microgird sometimes could
be disconnected with the macrogrid to form a ”Islanded Microgrid”. At the
same time, the microgrid has several solar panels and small wind turbines to
generate energy and is in charge of multiple Home Energy Management Sys-
tem (HEMS) in the microgrid. Figure 1 shows the hierarchy of the system.

Another important problem in DSM is how to model the different char-
acteristics of appliance. Most of the literature models that the end-user has
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an elastic energy demand and the the utility function is convex. A convex
utility function could make the problem tractable and lead to graceful and
rigid mathematic solutions. Many appliance do have an elastic energy de-
mand, such as heaters, air conditioners, etc. However, some of the appliance,
such as desktop PC, TV, stereos, elevators and lights actually have inelastic
energy demand and their utility functions should be modeled as a non-convex
function. In this paper, we model the utility function of appliance with an
inelastic energy demand (for brevity, we use inelastic appliance to refer to
an appliance with inelastic energy demand in the following) as a sigmoid
function and include both elastic and inelastic appliance in our problem. To
the best of our knowledge, our work is the first one classifying appliance into
elastic and inelastic for DSM.

In this paper, we propose a novel combinational pricing strategy for the
DSM in a microgrid to make the tradeoff between two important goals in
DSM. We use a single leader, multiple followers stackelberg game to model
the interaction between the microgrid and the HEMS as well as the interac-
tion among different HEMS. We acquire a unique Stackelberg-Nash equilib-
rium and derived a close form expression for the equilibrium under two-fold
pricing. We extend our result into uniform pricing.

The rest of the paper is organized as follows. We explain our system model,
especially pricing strategy and utility function in section II. We model the
interaction between microgrid operator and HEMS as a single leader, multi-
ple follower Stackelberg game in section III. In section IV, we derive a unique
Stackelberg-Nash equilibrium under two-fold pricing. In section V, we extend
our results into uniform pricing. Finally, we conclude our paper in section
VII.

2 System Model

We consider a scenario where a microgrid is in charge of multiple HEMS.
The microgrid owns several solar panels and small wind turbines. We denote
the renewable energy generation as (Sre) in the microgrid. Due to the un-
stable of the energy generation, the microgrid needs to purchase energy from
the macrogrid when its energy generation is lower than the energy consump-
tion and sell extra energy in the verse condition. We assume that microgrid
purchase energy on a real-time wholesale market from the macrogrid on a
ten-minute basis. The microgrid charges the HEMS through a fast chang-
ing real-time pricing. Microgrid could broadcast its real-time price through
a two-way communication system between the microgrid operator and the
HEMS which is implemented in the smart grid.
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2.1 Pricing Strategy

Generally speaking, there are three different pricing signals for the network
pricing problem: flat pricing, usage pricing and congestion pricing [8]. Usage
pricing, which is proportional to the amount of the energy consumption, is
widely used in smart grid. However, a single pricing signal has limited func-
tions. In this paper, we propose a novel combinational pricing strategy which
is a combination of usage pricing and ”mismatch pricing” in smart grid.

By ”mismatch”, we refer to the gap between planned energy supply and
real energy consumption, which will cause non-negligible cost to the micro-
grid system and users, such as voltage disturbance, potential damage to the
equipment and the possibility of blackout. This cost is a function with an in-
creasing order on the gap between planned energy supply and consumption.
We assume that the microgrid shift this cost to the HEMS in the system
through a real-time mismatch pricing, so that HEMS will automatically ad-
just their energy consumption on the elastic appliance to keep the balance
between energy generation and consumption. Assume there are N HEMS in
total. The mismatch pricing for ith HEMS can be written as:

k1

N

(

k2 −
i=N
∑

i=1

∑

a∈Ei

xi,a

)2

(1)

where k2 is the planned energy generation for the elastic appliance energy
usage, Ei is the set of elastic appliances of the ith HEMS. The HEMS have
incentive to adjust their elastic energy usage to keep the balance between
planned generation and consumption to reduce this mismatch pricing.

We model the microgrid as a self-interest agent maximizing its own profit.
It collect revenue from the HEMS through usage pricing. We consider both
the two-fold pricing strategy and uniform pricing strategy, which can be
regarded as a special case of two-fold pricing. The final pricing signal in our
design is the sum of usage pricing and mismatch pricing:

Pi = Pe ×
∑

a∈Ei

xi,a + Pie ×
∑

a∈IEi

xi,a +
k1

N

(

k2 −
i=N
∑

i=1

∑

a∈Ei

xi,a

)2

(2)

where Pe / Pie is the usage price per unit of energy for elastic / inelastic
appliance, Ei / IEi is the set of appliance which has elastic / inelastic en-
ergy demand for the ith HEMS, xi,a is the energy consumption for the ath

appliance of the ith HEMS, Pc is the mismatch pricing.

4



2.2 Utility Function

Most of the previous work model energy demand of the appliance as elas-
tic and the utility function of the appliance as a convex, continuous function
[7],[9],[4],[6]. The convex utility function could make the problem tractable
and lead to graceful math solutions to the problem but is limited to model
the appliances with an elastic energy demand. In fact, some of the appli-
ance in the smart grid could have inelastic energy demand. For example, the
desktop PC, TV, stereos, elevators and lights should be modeled as inelastic
appliance. They just consume the energy they required. Additional energy
cannot benefit them. The inelastic appliance could be modeled [10],[11],[12]
as a sigmoid function or discontinuous function, which can be regarded as
a special case of the sigmoid function. In this paper, we model the utility
function of the elastic appliance as a convex functions and utility function of
inelastic appliance as a sigmoid function.

• Elastic
When an appliance has an elastic energy demand, such as air condi-

tioner and heater, they perform better when there is more energy. We
model their utility function as

Ui,a = wi,alog (xi,a + 1) , xmin
i,a ≤ xi,a ≤ xmax

i,a (3)

Where Ui,a is the utility for ath appliance of ith HEMS, mi,a is the min-
imum energy requirement for this appliance.

• Inelastic
For the inelastic appliance, we can model their utility as sigmoid

function
Ui,a =

wi,a

1 + e−(bi,axi,a+di,a)
, xmin

i,a ≤ xi,a ≤ xmax
i,a (4)

with an inflection point as

xin
i,a =

−di,a

bi,a

(5)

Correspondingly, we can divide the appliance of ith HEMS into two sets,
Ei, IEi, where the appliance in Ei is elastic and the appliances in IEi is
inelastic. We have Ei ∩ IEi = ∅ and Ei ∪ IEi = Ai.

Fig2 shows an example for these two different utility functions.
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Figure 2: Utility functions Ui,a versus energy consumption. The convex
utility function is Ui,a = log (xi,a + 1). The non-convex utility function is
Ui,a = 4

1+e
−(2xi,a−40)

3 Game Theoretic Approach

We model the interaction between the microgrid operator and the HEMS
as a stackelberg game. The leader is the microgrid operator. It maximize
the profit and shapes the load through pricing signals. The HEMS in the
system are followers. They response to the pricing signal by shaping their
load to maximize their utility.

Assume there are N HEMS in the system. The ith HEMS objective can
be written as

∑

a∈Ai

Ui,a − P (6)

Note that the we use the mismatch pricing to encourage the users to adjust
their elastic load to match the energy generation of the microgrid network.
Because the mismatch pricing does not depend on the strategy of the inelas-
tic appliance, we can divide the optimization problem into two independent
problem as:

• Problem 1 (inelastic application)

arg max
xi,a

∑

a∈IEi

Ui,a − Pie

∑

a∈IEi

xi,a (7)
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s.t. xmin
i,a ≤ xi,a ≤ xmax

i,a

• Problem 2 (elastic application)

arg max
xi,a

∑

a∈Ei

Ui,a − Pe

∑

a∈Ei

xi,a −
k1

N

(

k2 −
i=N
∑

i=1

∑

a∈Ei

xi,a

)2

(8)

s.t. xmin
i,a ≤ xi,a ≤ xmax

i,a

Assume that microgrid operator is a self-interest agent. Its goal is to maxi-
mize the profit. We assume that microgrid operator are not allowed to benefit
from the mismatching pricing. In other words, the parameters k1 have to be
set according to the actual cost of the mismatch. The microgrid operator
could select optimal Pe and Pie to maximize its profit. We assume that the
variable cost for the renewable energy generation in the microgrid could be
neglected. The additional profit / cost for the microgrid comes from selling /
purchasing energy from the real-time market of macrogrid. We assume that
the price (Pm) is the same for selling energy and purchasing energy. Conse-
quently, the objective of the microgrid operator is:

• Problem 3:

arg max
Pe,Pie





Pe ×
∑i=N

i=1

∑

a∈Ei
xi,a

+ Pie ×
∑i=N

i=1

∑

a∈IEi
xi,a

− Pm × ((De (Pe) + Die (Pie)) − Sre)



 (9)

s.t. De, Die ≥ 0

where De / Die is the total demand of the elastic / inelastic appliance.

4 Stackelberg-Nash Equilibrium with Two-

fold Pricing

In this section, we assume that the microgrid operator sets two-fold price
for elastic appliance and inelastic appliance. In this case, the problem is
more tractable because the two prices could be optimized independently. We
derive a unique Stackelberg-Nash equilibrium in this scenario. In the next
section, we extend our conclusion to the scenario where microgrid operator
sets uniform price for the elastic and inelastic appliance.

Stackelberg equilibrium in our problem is actually a subgame perfect nash
equilibrium in an two-level extensive game. We first consider the first level.
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4.1 Demand Response of Inelastic Appliance

To acquire the demand response of inelastic application, we need to solve
problem 1 for the ith HEMS. We define

si,a (xi,a, Pie) = Ui,a − Pie × xi,a (10)

It is easy to deduce that optimization problem 7 is equivalent to a set of
independent optimization problems:

x∗
i,a (Pie) = arg max

xi,a

si,a

(

x∗
i,a, Pie

)

, ∀a ∈ IEi (11)

Note that si,a is still a sigmoid function with the same inflection point xin
i,a.

We can divide this optimization problem into two problems.

• Problem 1.1
xh

i,a (Pie) = arg max
xi,a

si,a (xi,a, Pie) , (12)

s.t. xin
i,a ≤ xi,a ≤ xmax

i,a

• Problem 1.2:
xl

i,a (Pie) = arg max
xi,a

si,a (xi,a, Pie) , (13)

s.t. xmin
i,a ≤ xi,a ≤ xin

i,a

For problem 1.1, since si,a (xi,a, Pu) is concave for xi,a ∈
[

xin
i,a, x

max
i,a

]

, we can
take derivative to get

s′i,a =
wi,abi,ae

−(bi,axi,a+di,a)

[

1 + e−(bi,axi,a+di,a)
]2 − Pu = 0 (14)

For convenience, we denote bwi,a = wi,abi,a. We can consider two cases:

• Case 1 if bwi,a < 4Pu, we have s′i,a < 0. The function is decreasing on
the domain. Thus, we have

xh
i,a = xin

i,a (15)

• Case 2 if bwi,a ≥ 4Pu, since 0 ≤ e−(bi,axi,a+di,a) ≤ 1, we can get

e−(bwi,axi,a+di,a) =
− (2Pu − bwi,a) − 2

√

(2Pu − bwi,a)
2 − 4P 2

u

2Pu

(16)
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Thus, we get

xh
i,a =









−di,a − ln

(

−(2Pu−bwi,a)− 2
√

(2Pu−bwi,a)2−4P 2
u

2Pu

)

bi,a









(17)

Of course, we still need to check if this value is in the range of xin
i,a ≤

xi,a ≤ xmax
i,a .

Based on the analysis of two cases above, we have:

xh
i,a (Pu) =







































xin
i,a if Pu >

bwi,a

4

xmax
i,a if Pu ≤ bwi,ae

−(bi,axmax
i,a +di,a)

"

1+e
−(bi,axmax

i,a
+di,a)

#2

−di,a−ln

0

@

−(2Pu−bwi,a)− 2

r

(2Pu−bwi,a)
2
−4P2

u

2Pu

1

A

bi,a
other

(18)

To solve problem 1.2, note that si,a is a convex function for xmin
i,a ≤ xi,a ≤

xin
i,a. The optimal solution must exist in

{

xmin
i,a , xin

i,a

}

. For inelastic appliances,
we assume xmin

i,a = 0. Intuitively, we have Ui,a (0) = 0, because the utility
should be 0 when there is no power. We can get the utility at the inflection
point as

Ui,a

(

xin
i,a

)

=
wi,a

2
− Pu

−di,a

bi,a

(19)

Thus, we have:

xl
i,a (Pu) =

{

xmin
i,a ifPu >

−bwi,a

2di,a

xin
i,a other

(20)

Now the problem is how to combine xl
i,a and xh

i,a to get the optimal solution

x∗
i,a to the original problem. For example, assume

bwi,a

−2di,a
≥ bwi,a

4
, it is easy to

get

x∗
i,a (Pu) =















































xmin
i,a if Pu >

−bwi,a

2di,a

xin
i,a if

−bwi,a

2di,a
≥ Pu >

bwi,a

4

xmax
i,a if Pu ≤ bwi,ae

−(bi,axmax
i,a +di,a)

"

1+e
−(bi,axmax

i,a
+di,a)

#2

−di,a−ln

0

@

−(2Pu−bwi,a)− 2

r

(2Pu−bwi,a)
2
−4P2

u

2Pu

1

A

bi,a
other

(21)
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However, if we consider the practical utility characteristics of inelastic appli-
ance such as TV and PC, we typically have

bwi,a

−2di,a
<

bwi,a

4
. In this case, the

combination results is:

x∗
i,a (Pu) =







































xmin
i,a if Pu > P ′

u

xmax
i,a if Pu ≤ bwi,ae

−(bi,axmax
i,a +di,a)

"

1+e
−(bi,axmax

i,a
+di,a)

#2

−di,a−ln

0

@

−(2Pu−bwi,a)− 2

r

(2Pu−bwi,a)
2
−4P2

u

2Pu

1

A

bi,a
other

(22)

where P ′
u can be acquired by solving:

bwi,ae
−(bi,ax′

i,a+di,a)
[

1 + e−(bi,ax′

i,a
+di,a)

]2 − P ′
u = 0 (23)

P ′
ux

′
i,a =

wi,a

1 + e−(bi,ax′

i,a+di,a)
(24)

To make this problem tractable, we consider the practical characteristic
of these inelastic appliance. As far as the inelastic appliance we considered,
|b|, |d| should be quite large (the utility function is more like a discontinuous
function) and xmax

i,a should be quite close to the inflection point (high voltage
is bad for PC and TV), we write it as

xmax
i,a = xin

i,a + ǫ (25)

where ǫ is a very small number. We have Ui,a (xmax) ≈ 1 because |b|, |d| are
quite large. From the prospective of the leader, we have xmax

i,a ≈ xin
i,a because

we assume that ǫ is a very small number. Now we can approximate our
solution as:

x∗
i,a (Pu) =

{

xmin
i,a ifPu >

−bwi,a

di,a

xin
i,a other

(26)

Assume that the end-users tell their preference to HEMS by setting priority
on different appliance. For example, the user could set PC and TV to be
high priority and the democratize lights to be low priority. Assume there
are M priorities on the HEMS. For the appliance set with the same priority,
they can be regarded as one appliance in total. For all the appliance with
inelastic energy demand, assuming that they are already sorted in the order
−bw1,1

d1,1
= · · · =

−bwN,1

dN,1
< · · · <

−bw1,M

d1,M
= · · · =

−bwN,M

dN,M
, then the total energy

demand from appliance with inelastic energy demand is given by equation
27.
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Die (Pu) =



































∑i=N

i=1

∑a=M

a=1 xmin
i,a ifPu >

−bN,M

dN,M
∑i=N

i=1

∑a=M−1
a=1 xmin

i,a +
∑i=N

i=1

∑a=M

a=M xin
i,a if

−bN,M

dN,M
≥ Pu >

−bN,M−1

dN,M−1
∑i=N

i=1

∑a=M−2
a=1 xmin

i,a +
∑i=N

i=1

∑a=M

a=M−1 xin
i,a if

−bN,M−1

dN,M−1
≥ Pu >

−bN,M−2

dN,M−2

...
...

∑i=N

i=1

∑a=M

a=1 xin
i,a ifPu <

−bN,1

dN,1

(27)

4.2 Demand Response of elastic Appliance

To acquire demand response of elastic appliance is quite different from
the procedure for inelastic appliance. The most difficult part is that mis-
match pricing signal for an arbitrary HEMS is dependent on the strategy of
other HEMS. In this case, we cannot divide the problems into independent
subproblems like what we did for the inelastic appliance. For the elastic
appliance, different HEMS form a non-cooperative game among themselves,
where Nash Equilibrium (NE) is a candidate solution.

To acquire the elastic appliance, we need to solve problem 2. Note that
adding

∑N

j=1,j 6=i

∑

a∈Ej
Uj,a−Pe

∑N

j=1,j 6=i

∑

a∈Ei
xi,a to the objective function

of the ith HEMS will not change the optimal strategy of ith HEMS. So all
the HEMS have the identical objective function as

OF ′ =
N
∑

i=1

∑

a∈Ei

Ui,a −
k1

N

(

k2 −
i=N
∑

i=1

∑

a∈Ei

xi,a

)2

− Pu ×
N
∑

i=1

∑

a∈Ei

xi,a (28)

Obviously, Ui,a should not relate to xj,b, (j, b) 6= (i, a) because the appli-
ance utility should not relate to how much energy other appliances consumed.
Consequently, we have

∂2OF ′

∂xi,a∂xj,b

= −k1

N
< 0, i, j ∈ {1, . . . , N} (29)

Because all the appliance is Ei is elastic, Ui,a is always concave for different
types of appliances, we have

∂2OF ′

∂xi,a∂xi,a

=
∂2Uxi,a

∂xi,a∂xi,a

− k1

N
< 0, i ∈ {1, . . . , N} (30)

So the OF ′ is strictly concave. This optimization problem has a unique
solution. The strategy of the ith HEMS in the NE can be acquired by solving

∂OF ′

∂xi,a

= 0, ∀a ∈ Ai (31)
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To get the NE of the game, we need equation 31 holds for the strategy of
every HEMS. Thus, we get

∂Ui,a

∂xi,a

=
∂Uj,b

∂xj,b

, a ∈ Ai, b ∈ Aj , ∀i, j ∈ N (32)

Given our utility function for the elastic appliances, we have

wi,a

xi,a + 1
=

wj,b

xj,b + 1
(33)

Define yi,a = xi,a + 1, y =
∑i=N

i=1

∑

a∈Ei yi,a, m =
∑i=N

i=1

∑

a∈Ei 1,w =
∑i=N

i=1

∑

a∈Ei wi,a,
we can change equation 31 as

∂OF ′

∂xi,a

= g(y) =
w

y
− 2k1

N
(y − k2 − m) − Pe = 0 (34)

s.t.y ≥ m

It is quite easy to solve this equation to get:

y =

2k1

N
(k2 + m) − Pe + 2

√

(

2k1

N
(k2 + m) − Pe

)2
+ 8k1w

N

2k1

N

(35)

s.t.Pe <
w

m
+

2k1k2

N

For the energy demand of a single appliance, we have

xi,a =
wi,ay

w
− 1 (36)

To guarantee xi,a ≥ 0, we need

wi,ay

w
≥ 1, ∀i, a (37)

We assume that all the appliance have similar wi,a, so that this constrain
always hold. Then we can get the analytical expression of the total demand
of the elastic appliance as

De =

2k1

N
(k2 + m) − Pe + 2

√

(

2k1

N
(k2 + m) − Pe

)2
+ 8k1w

N

2k1

N

− m (38)

s.t.Pe <
w

m
+

2k1k2

N
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4.3 Stackelberg Game Equilibrium

In this section, assume that two-fold pricing strategy is adopted for elastic
and inelastic appliance. The problem of the microgrid operator is to choose
the optimal Pe, Pie so that profit is maximized. The problem has been
formulated in problem 3. To solve problem 3, we can divide the problem into
two independent problem to acquire optimal Pe and Pie independently.

4.3.1 Optimal Price for Inelastic Appliance

Because for two-fold pricing scheme, optimal price for inelastic appliance
is not related to the elastic appliance, the problem could be written as

arg max
Pie

(Pie × Die − Pm × Die) (39)

According to equation 27, the demand response of inelastic appliances is
a step function. It is obviously that the optimal solution exists in the set
−bN,1

dN,1
,
−bN,2

dN,2
, . . . ,

−bN,M

dN,M
, because we have ∂Die

∂Pie
= 0 for the each interval of

equation 27. Then we can search the set to get the optimal P∗ie, which
requires a low computational complexity as O (n), where n is the number of
points in the set.

4.3.2 Optimal Price for Elastic Appliance

To acquire the optimal P∗e, we first write the problem as:

arg max
Pe

(Pe × De − Pm × De) (40)

Note that it is quite difficult to solve this problem if we directly substitute
equation 38 to the above equation. Instead, we can substitute equation 34
to get

arg max
y

{[

w

y
− 2k1

N
(y − k2 − m) − Pm

]

× (y − m)

}

(41)

We take derivative on y to get

−4k1

N
y3 +

[

(k2 + 2m)
2k1

N
− Pb

]

y2 + mw = 0 (42)

We can get the discriminant [?] of this cubic function as:

∆ = −4

[

(k2 + 2m)
2k1

N
− Pb

]3

mw − 27

(

4k1

N

)2

m2w2 (43)
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Assume Pb < (k2 + 2m) 2k1

N
+ 3

(

4k1

N

)

, we have

∆ < 0

The only real solution y∗
e is equation 44

y∗
e = +

[(k2+2m)
2k1
N

−Pb]
3

4k1
N

+

(

1

2

"

2[(k2+2m)
2k1
N

−Pb]
3
+27( 4k1

N )
2
mw+

r

−27( 4k1
N )

2
∆

#) 1
3

3
4k1
N

+

(

1

2

"

2[(k2+2m)
2k1
N

−Pb]
3
+27( 4k1

N )
2
mw−

r

−27( 4k1
N )

2
∆

#) 1
3

3
4k1
N

(44)

The optimal Pe is

Pe =
w

y∗
e

− 2k1

N
(y∗

e − k2 − m) (45)

5 Stackelberg-Nash Equilibrium with Uniform

Pricing

For the uniform pricing, we need to consider the whole problem, instead
of dividing the problem into two subproblems. Assume the uniform price for
both elastic and inelastic appliance is Pu. The problem could be formulated
as:

arg max
Pu

(

Pu × (De (Pu) + Die (Pu))
−Pm × (De (Pu) + Die (Pu) − Sre)

)

(46)

According to equation 27, we find that Die is not a continuous function, we
need to check all the discontinuous points to find the best point. Then, for
every segment of Pu, Die is a constant, we can treat Die be a constant and
try to find a extreme point. We need to substitute every solution of Die to
problem and follow the method to acquire Pe in the previous section. We
can extend the equation 41 to :

arg max
y

{[

w

y
− 2k1

N
(y − k2 − m) − Pm

]

× (y − m + Die)

}

(47)

Then we follow the procedure in the previous section to get the extreme point
P j

u for every jth interval. However, we still need to check that P j
u falls in

the interval so that the solution is valid. There could be as many as m valid
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extreme points or no valid extreme point at all. Besides these extreme points,
we still need to check all the discontinuous point at

−bN,1

dN,1
,
−bN,2

dN,2
, . . . ,

−bN,M

dN,M

in equation 27. Because we just search in a finite set, the computational
complexity is still as low as O (n), where n is the number of discontinuous
points.

6 Conclusion

In this paper, we used the game-theoretic tools to analyze the interaction
between the microgrid operator and end users as well as among end users
themself. We considered both elastic and inelastic appliance. A single leader,
multiple follower Stackelberg game is formulated. We acquired an unique
Stackelberg-Nash equilibrium under both two-fold pricing and uniform pric-
ing scheme. The future work is to use show our results using experimental
results.
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