
Algorithm Con�guration to Investigate the Price

of Anarchy

Paper ID: 11

Abstract

The Price of Anarchy (PoA) is a measure that compares the ratio be-
tween the maximum and minimum of a cost function evaluated at any
Nash equilibrium of a game. There have been many results that bound
the highest PoA for certain classes of games, but little has been done to
explore the distribution of the PoA over a set of games. This project pro-
poses a method to empirically evaluate this distribution using automatic
algorithm con�guration techniques.

1 Introduction

When self interested agents partake in a game to maximize their own utility,
it is possible for them to settle into an equilibrium of some variety that is
far from the social optimum. Consider the `traveller's dilemma', where two
travellers lose their luggage on a ight home. Both travellers have identical
souvenirs in their bags, and the airline is willing to reimburse the travellers,
but doesn't know how much the contents were worth. The airline asks the two
passengers individually what the price of the trinkets were, if the passengers
both report the same value, then the airline pays both of them the speci�ed
amount. If however, the reported values di�er, the airline awards a small bonus
to the traveller who reported the smaller value, and then gives the traveller
who reported a higher value a slightly smaller amount then what was awarded
to the lower value traveller. In this game, the only Nash equilibrium is where
both agents report that the value of the item was as low as possible. Clearly,
they both would have been happier if they both agreed to mention the highest
price, since the airline would be forced to reimburse both agents the same large
amount.

The Price of Anarchy (PoA) was introduced in [3] as a formal way to quantify
how `bad' a Nash equilibrium can be when compared to the optimal equilibrium
with respect to a particular social function. The PoA is in the range [1;1), with
higher values indicating that if there is no coordination mechanism amongst
agents to select the socially optimal equilibrium, a Nash equilibrium could be
played that results in a collectively very poor outcome.

Many classes of games have tight bounds on the worst case PoA, such as
congestion games and di�erent types of auctions. However, these are all worst

1



case measures over all possible game instances, they say nothing about what
the PoA looks like on games that arise in practice. Although determining the
expected PoA for a distribution could be done theoretically, it is likely to be
complex, and proofs may not transfer between di�erent distributions of game
instances. As such, a method that can approximate the distribution of the PoA
over several instances empirically is desired.

Since �nding all Nash equilibria in a game is non-trivial and in the complexity
class PPAD, it is not always feasible to compute all possible values for a game.
However, there are methods that are capable of quickly �nding a single Nash
equilibrium in a short period of time, but there is no assurance that they will
�nd one given a speci�c starting point. By applying an algorithm con�gurator
that tunes these Nash �nding algorithms towards equilibria with high and low
social function valuations, the PoA can be evaluated in a feasible amount of
time. Knowing what the distribution of the PoA can be over a set of possible
games, designers can decide if the expected PoA of the most likely games is
something they are willing to tolerate, or if they need to modify the game to
produce a more favourable expected value.

2 Method

Automated algorithm con�guration can be viewed as an optimization problem.
The search space consists of all possible parameters that can be fed into an
algorithm, and the objective function is some metric that is computed after the
algorithm is executed on a set of training instances. ParamILS [2] is one such
method that has been successfully used to increase the performance of SAT
solvers with respect to run time, as well as improving the solution quality in
scheduling problem scenarios.

As already mentioned, there exist algorithms that are capable of �nding all
possible equilibria in a game (or very nearly all), but they require a huge amount
of time for non-trivial game sizes. Alternatively, there are other algorithms that
take as input a mixed strategy pro�le, and are able to possibly determine some
Nash equilibria of the game. The global Newton method by Govindan and
Wilson [1] is one such method, and it has the advantage of being very fast.

ParamPoA is a new system that uses ParamILS to compute the PoA of an
arbitrary game. It uses any Nash equilibrium solver that takes as input a mixed
strategy pro�le. Each possible action is a parameter that can be tuned, from
values between 0 and 1. Before running the solver, these parameter values are
turned into a legal mixed strategy pro�le by normalizing the sum of the values
across each player's actions. Because ParamILS is a local search method, it
bene�ts from performing multiple independent runs, to mitigate the results of
the search getting trapped in a local optimum.

The Gambit [5] package was used to compute Nash equilibria in ParamPoA.
In particular the gambit-gnm program was used, which implements the GNM
method by Govindan and Wilson, as it intakes a proposed mixed strategy pro-
�le as a starting point for computation. It should be noted that gambit-gnm

2



appears to have a bug in its implementation, as it occasionally returns results
that it claims are Nash equilibria, but are truly not. The cause of this error
was not immediately apparent, so a small check was added to make sure that
the proposed equilibrium causes the game's Lyapunov function to be equal to
zero (the Lyapunov function is zero exactly when the game is in equilibrium).
Whenever gambit-gnm returned a false equilibrium, this was not counted in
ParamILS's tuning time.

3 Experiments and Results

All experiments were performed on a i7-2720QM CPU, running eight experi-
ments in parallel. Version 2.3.5 of ParamILS was used, running on a 64-bit
Linux. First, ParamPoA was applied to a number of randomly generated games
to see if it was able to properly compute the PoA for these games. Following
this, it was applied to a more interesting problem domain of the Generalized
Second Price Auction with some success.

3.1 Random Game Veri�cation

To verify that ParamPoA has the potential of working, GAMUT [7] was used to
create 80 random two player games where each player had thirteen actions, with
payo�s between -100 and 100. Using Gambit's gambit-enummixed method, all
the extreme points of the set of equilibria were computed. ParamPoA was then
run on these instances, looking for the equilibria with lowest and highest social
welfare, computed as the sum of utilities for each agent.

A total of �ve independent runs were used for �nding each min/max equi-
librium, with a total of 30 seconds of tuning time per run. This time value only
includes the seconds used running the algorithm - not the time taken to score
individual runs when preparing an algorithm run. ParamILS will also terminate
early if it thinks it is not able to improve upon its current solution. Each action
parameter was quantized into the set f0; 0:1; 0:2; : : : ; 1:0g, with eleven possible
choices.

The restriction to two agents was necessary, since methods for �nding all
possible Nash equilibria in a game take much longer when dealing with three or
more agents. In each instance, the algorithm con�guration method was able to
�nd an equilibrium of each the lowest and highest social welfare, computing the
correct value for the PoA. However, using the enumeration method in Gambit
required signi�cantly more computing time; on average ParamPoA performed
better than the best case for the enumeration method. Table 1 provides timing
information for these experiments.

3.2 The Generalized Second Price Auction

The Generalized Second Price Auction (GSP), commonly known as the Ad-
Words auction [6], is receiving a great deal of attention from researchers, due

3



Table 1: 13x13 Random Games - Runtime for Computation of PoA (seconds)
Min Max Mean Std. Dev.

gambit-enummixed 219 86,448 12,111 15,691
ParamPoA 103 462 213 68

to it's heavy use in e-commerce and other interesting properties. It is not dom-
inant strategy truthful like the famous Vickrey-Clark-Groves mechanism, nor
does it maximize social welfare. In the GSP, each player has a valuation vi, and
they place a single bid bi for positions in a queue. The auctioneer awards the
nth most valuable position to the player who placed the nth highest bid, but
charges them the n + 1th highest bid. In the AdWords setting, these positions
correspond to rankings in the list of sponsored results returned from a search
query. It's natural to assume that the �rst position will get the highest number
of clicks from users, so it is the most valuable, as it has the potential to draw
the most visitors to a bidder's website.

Leme and Tardos [4] proved bounds on the PoA for the GSP, under Pure,
Mixed and Bayes-Nash equilibria. They restrict themselves to agents that are
conservative (since bidding above your valuation vi is a weakly-dominated strat-
egy), and de�ne the quality of an equilibrium as

P
�ivi, where �i is the relative

quality of the position that was awarded to agent i. Using this measure, they
come up with a bound of 4 for mixed-Nash, and 8 for Bayes-Nash equilibria.

The GSP can be formulated as a normal form game, where bids a player
make correspond to the actions that they can take. This moves the game from
a continuous game to a discrete one, since in practice bidders can't make bids
with increments smaller than a penny, this is an acceptable trade o�. Each
player's utility is de�ned as ui = �i(vi � bi). The social welfare of an outcome
in this game is

P
ui. If restricted to agents that don't play weakly dominated

strategies, further imposition of the rule that in the case that bi > vi, ui = �1
is required. In GSP, when the social welfare of an outcome is high, it means
that agents were able to gain a large bene�t by gaining a high value position
while paying less to the auctioneer.

3.2.1 2 Player GSP

160 instances of two player GSP (2-GSP) were created, with the valuations
for bidders drawn uniformly from integers 1 to 10, with an action space of in-
teger bids between 0 to 10. Each position's value was uniformly drawn from
the range of integers 0 to 10. ParamPoA ran a total of �ve independent runs
for �nding each min/max equilibrium on each instance, with a total of 60 sec-
onds of tuning time for each run. In all but six of the generated instances,
ParamPoA was able to compute the correct value, veri�ed by solving the game
using gambit-enummixed. Because the action space is quite small, these in-
stances can be solved rapidly using this method, so timing information is not
that interesting. When ParamPoA failed, it always underestimated the correct

4



0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

PoA

F
(P

o
A

)

Comparison of CDFs on 11 Action 2−GSP

 

 

ParamPoA

gambit−enummixed

Figure 1: CDF of the PoA computed using ParamPoA and gambit-enummixed

on 160 random GSP instances with 2 players, 11 actions each.

value. Figure 1 shows the CDF of the PoA obtained when using ParamPoA as
compared to the actual CDF for the generated instances.

Next, 160 instances of 2-GSP were created again, but this time the action
space was nearly doubled. Players' valuations took on random values in incre-
ments of 0.5 from 0.5 to 10, and could place a bid in 0.5 increments from 0 to
10. The valuations for each position were also chosen from this interval from
0 to 10. Given the larger action space, ParamPoA was tuned for 120 seconds,
still performing �ve independent runs looking for min/max values per instance.
In these experiments, ParamPoA was able to compute the correct PoA in all
but 24 instances. Since these games often have a large number of dominated
strategies, in nearly all the instances the computation of gambit-enummixed

takes just a few seconds, but rarely it can take a number of hours. Table 2
shows the di�erences in times for these calculations.

Just like in the previous case of eleven action 2-GSP, when ParamPoA failed
it always computed a PoA that was lower then the correct value. Figure 2
shows a comparison of the true empirical distribution against the one computed
by ParamPoA.

Table 2: 2-GSP with 21 actions - Runtime for Computation of PoA (seconds)
Min Max Mean Std. Dev.

gambit-enummixed 0.007 42,482 1,203 5,754
ParamPoA 538 984 829 87

5



0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

PoA

F
(P

o
A

)

Comparison of CDFs on 21 Action 2−GSP

 

 

ParamPoA

gambit−enummixed

Figure 2: CDF of the PoA computed using ParamPoA and gambit-enummixed

on 160 random GSP instances with 2 players, 21 actions each.

3.2.2 3 or more Player GSP

Given the success with two player games, ParamPoA was tested on three player
GSP games. Similar to the �rst instances of 2-GSP, players had eleven ac-
tions, with valuations between 1 and 10 for both the bidders and the positions.
ParamPoA again used �ve independent runs, but used a larger tuning time of
120 seconds since the equilibrium calculation would now take slightly longer.
On the 160 instances, ParamPoA failed to achieve signi�cant results. It almost
always computed the PoA to be 1, but this was veri�ed to be wrong by running
gambit-enumpoly (which is not guaranteed to �nd all equilibria in a game)
for a short while, and �nding a number of equilibria with di�erent social wel-
fares. Even when the tuning time was extended up to 600 seconds, there was
no discernible di�erence in the resulting computation.

4 Future Work

Currently, this method is only used to sample the PoA from a speci�ed distribu-
tion of games. Since �nding an upper bound on the PoA is of interest, it should
be relatively straightforward to extend this system for �nding an instance that
has a large PoA by adding another layer of algorithm con�guration. Instead of
generating the problem instances randomly, the inputs to the game generator
could be paramaterized, and an algorithm tuner could then �nd the settings
that would generate a game with the highest PoA.

The gambit-gnm implementation (or the implementation of ParamPoA)
needs to be examined carefully to search for the reason behind the method
returning false Nash equilibria. In addition, di�erent Nash �nding algorithms

6



need to be evaluated for their ability to �nd low and high valued equilibria, as
well as the e�ect of di�erent algorithm con�gurators.

Even though ParamPoA failed to work on GSP instances with more than
two players, a few brief experiments demonstrated that it manages to achieve
some success with three or more player random games. Note again that not all
equilibria were found for these games, but the values produced by ParamPoA
were at least as good as the equilibria returned from gambit-enumpoly. More
e�ort needs to be placed into the investigation of when ParamPoA fails to see
if this is an isolated incident, or if it will not work on special classes of games.

5 Conclusion

Algorithm con�guration was successfully used to tune a Nash equilibrium solver
for some games, and was able to compute the distribution of the PoA to an
acceptable level of accuracy for these games. However, for some larger games,
the con�guration process failed to achieve any meaningful results. Despite this,
ParamPoA is still useful, as it is able to provide a very close approximation of
the PoA of two player games faster then solving the game completely. Further
investigations need to be made to see if ParamPoA can be extended to remove
its limitations, allowing for PoA calculations of arbitrary game instances in a
practical amount of time.

References

[1] S. Govindan and R. Wilson. A global newton method to compute nash
equilibria. Journal of Economic Theory, 110(1):65{86, 2003.

[2] F. Hutter, H.H. Hoos, K. Leyton-Brown, and T. St�utzle. ParamILS: an auto-
matic algorithm con�guration framework. Journal of Arti�cial Intelligence
Research, 36(1):267{306, 2009.

[3] E. Koutsoupias and C. Papadimitriou. Worst-case equilibria. In Proceedings
of the 16th annual conference on Theoretical aspects of computer science,
pages 404{413. Springer-Verlag, 1999.

[4] R.P. Leme and E. Tardos. Pure and bayes-nash price of anarchy for gener-
alized second price auction. In Foundations of Computer Science (FOCS),
2010 51st Annual IEEE Symposium on, pages 735{744. IEEE, 2010.

[5] R. D. Mckelvey, A. M. Mclennan, and T. L. Turocy. Gambit: Software Tools
for Game Theory, 2010. http://www.gambit-project.org.

[6] A. Mehta, A. Saberi, U. Vazirani, and V. Vazirani. Adwords and generalized
on-line matching. In Foundations of Computer Science, 2005. FOCS 2005.
46th Annual IEEE Symposium on, pages 264{273. IEEE, 2005.

7



[7] E. Nudelman, J. Wortman, Y. Shoham, and K. Leyton-Brown. Run the
gamut: A comprehensive approach to evaluating game-theoretic algorithms.
In Proceedings of the Third International Joint Conference on Autonomous
Agents and Multiagent Systems-Volume 2, pages 880{887. IEEE Computer
Society, 2004.

8


