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Computational Problems in Domination

Identifying strategies dominated by a pure strategy

polynomial, straightforward algorithm

Identifying strategies dominated by a mixed strategy

polynomial, somewhat tricky LP

Identifying strategies that survive iterated elimination

repeated calls to the above LP

Asking whether a strategy survives iterated elimination under
all elimination orderings

polynomial for strict domination (elimination doesn’t matter)
NP-complete otherwise
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Rationalizability

Rather than ask what is irrational, ask what is a best response
to some beliefs about the opponent

assumes opponent is rational
assumes opponent knows that you and the others are rational
...

Equilibrium strategies are always rationalizable; so are lots of
other strategies (but not everything).

In two-player games, rationalizable ⇔ survives iterated
removal of strictly dominated strategies.
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Formal definition

Definition (Correlated equilibrium)

Given an n-agent game G = (N,A, u), a correlated equilibrium is
a tuple (v, π, σ), where v is a tuple of random variables
v = (v1, . . . , vn) with respective domains D = (D1, . . . , Dn), π is
a joint distribution over v, σ = (σ1, . . . , σn) is a vector of
mappings σi : Di 7→ Ai, and for each agent i and every mapping
σ′i : Di 7→ Ai it is the case that∑

d∈D
π(d)ui (σ1(d1), . . . , σi(di), . . . , σn(dn))

≥
∑
d∈D

π(d)ui
(
σ1(d1), . . . , σ

′
i(di), . . . , σn(dn)

)
.
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Existence

Theorem

For every Nash equilibrium σ∗ there exists a corresponding
correlated equilibrium σ.

This is easy to show:

let Di = Ai

let π(d) =
∏

i∈N σ∗i (di)
σi maps each di to the corresponding ai.

Thus, correlated equilibria always exist
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Remarks

Not every correlated equilibrium is equivalent to a Nash
equilibrium

thus, correlated equilibrium is a weaker notion than Nash

Any convex combination of the payoffs achievable under
correlated equilibria is itself realizable under a correlated
equilibrium

start with the Nash equilibria (each of which is a CE)
introduce a second randomizing device that selects which CE
the agents will play
regardless of the probabilities, no agent has incentive to deviate
the probabilities can be adjusted to achieve any convex
combination of the equilibrium payoffs
the randomizing devices can be combined
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Computing CE

∑
a∈A|ai∈a

p(a)ui(a) ≥
∑

a∈A|ai∈a

p(a)ui(a
′
i, a−i) ∀i ∈ N, ∀ai, a′i ∈ Ai

p(a) ≥ 0 ∀a ∈ A∑
a∈A

p(a) = 1

variables: p(a); constants: ui(a)

we could find the social-welfare maximizing CE by adding an
objective function

maximize:
∑
a∈A

p(a)
∑
i∈N

ui(a).
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Why are CE easier to compute than NE?

∑
a∈A|ai∈a

p(a)ui(a) ≥
∑

a∈A|a′
i∈a

p(a)ui(a
′
i, a−i) ∀i ∈ N, ∀ai, a′i ∈ Ai

p(a) ≥ 0 ∀a ∈ A∑
a∈A

p(a) = 1

intuitively, correlated equilibrium has only a single randomization
over outcomes, whereas in NE this is constructed as a product of
independent probabilities.

To change this program so that it finds NE, the first constraint
would be∑

a∈A
ui(a)

∏
j∈N

pj(aj) ≥
∑
a∈A

ui(a
′
i, a−i)

∏
j∈N\{i}

pj(aj) ∀i ∈ N, ∀a′i ∈ Ai.

This is a nonlinear constraint!
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Fun Game

Guess 95% of the average

Guess 40% of the average
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Behavioral Game Theory

Behavioral game theory: Aims to extend game theory to
modeling human agents.

There are a wide range of BGT models in the literature.
Historically, BGT has been most concerned with explaining
behavior, often on particular games, rather than predicting it.
No study compares a wide range of models, considers
predictive performance, or looks at such a large, heterogeneous
set of games.
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This Talk

We:

Compared predictive performance of:

Nash equilibrium, plus
Four prominent models from behavioral game theory
Using six experimental datasets from the literature

Bayesian sensitivity analysis:

Yields new insight into existing model (Poisson-CH)
Argues for a novel simplification of an existing model
(Quantal level-k)

Behavioral Game Theory Based on joint work with James Wright, Slide 14
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Nash equilibrium and human subjects

Nash equilibrium often makes counterintuitive predictions.

In Traveler’s Dilemma: The vast majority of human players
choose 97–100.

Modifications to a game that don’t change Nash equilibrium
predictions at all can cause large changes in how human
subjects play the game [Goeree & Holt 2001].

In Traveler’s Dilemma: When the penalty is large, people play
much closer to Nash equilibrium.
But the size of the penalty does not affect equilibrium.

Clearly Nash equilibrium is not the whole story.

Behavioral game theory proposes a number of models to
better explain human behavior.

Behavioral Game Theory Based on joint work with James Wright, Slide 16



Recap Computing CE Behavioral Game Theory Models Experimental Setup Model Comparisons Bayesian Analysis

Nash equilibrium and human subjects

Nash equilibrium often makes counterintuitive predictions.

In Traveler’s Dilemma: The vast majority of human players
choose 97–100.

Modifications to a game that don’t change Nash equilibrium
predictions at all can cause large changes in how human
subjects play the game [Goeree & Holt 2001].

In Traveler’s Dilemma: When the penalty is large, people play
much closer to Nash equilibrium.
But the size of the penalty does not affect equilibrium.

Clearly Nash equilibrium is not the whole story.

Behavioral game theory proposes a number of models to
better explain human behavior.

Behavioral Game Theory Based on joint work with James Wright, Slide 16



Recap Computing CE Behavioral Game Theory Models Experimental Setup Model Comparisons Bayesian Analysis

Behavioral game theory models

Themes:1

1 Quantal response: Agents best-respond with high probability
rather than deterministically best responding.

2 Iterative strategic reasoning: Agents can only perform limited
steps of strategic “look-ahead”.

One model (QRE) is based on quantal response, two models
(Lk, CH) are based on iterative strategic reasoning, and one model
(QLk) incorporates both.

1Recall: we restrict attention to unrepeated, simultaneous-move games.
Behavioral Game Theory Based on joint work with James Wright, Slide 17
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BGT model: Quantal response equilibrium (QRE)

QRE model [McKelvey & Palfrey 1995] parameter: (λ)

Agents quantally best respond to each other.

QBRi(s−i, λ)(ai) =
eλui(ai,s−i)∑

a′i∈Ai
eλui(a

′
i,s−i)

Precision parameter λ ∈ [0,∞) indicates how sensitive agents
are to utility differences.

λ = 0 means agents choose actions uniformly at random.
As λ→∞, QBR approaches best response.

Behavioral Game Theory Based on joint work with James Wright, Slide 18
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BGT models: Iterative strategic reasoning

Level-0 agents choose uniformly at random.

Level-1 agents reason about level-0 agents.

Level-2 agents reason about level-1 agents.

There’s a probability distribution over levels.

Higher-level agents are “smarter”; scarcer

Predicting the distribution of play: weighted sum of the
distributions for each level.

Behavioral Game Theory Based on joint work with James Wright, Slide 19
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BGT model: Lk

Lk model [Costa-Gomes et al. 2001] parameters: (α1, α2, ε1, ε2)

Each agent has one of 3 levels: level-0, level-1, or level-2.

Distribution of level [2, 1, 0] agents is [α2, α1, (1− α1 − α2)]

Each level-k agent makes a “mistake” with prob εk, or best
responds to level-(k − 1) opponent with prob 1− εk.

Level-k agents believe all opponents are level-(k − 1).
Level-k agents aren’t aware that level-(k − 1) agents will make
“mistakes”.

IBRi,0 = Ai,

IBRi,k = BRi(IBR−i,k−1),

πLki,0 (ai) = |Ai|−1,

πLki,k (ai) =

{
(1− εk)/|IBRi,k| if ai ∈ IBRi,k,
εk/(|Ai| − |IBRi,k|) otherwise.

Behavioral Game Theory Based on joint work with James Wright, Slide 20
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BGT model: Cognitive hierarchy

Cognitive hierarchy model [Camerer et al. 2004] parameter: (τ)

An agent of level m best responds to the truncated, true
distribution of levels from 0 to m− 1.

Poisson-CH: Levels are assumed to have a Poisson distribution
with mean τ .

πPCHi,0 (ai) = |Ai|−1,

πPCHi,m (ai) =

{
|TBRi,m|−1 if ai ∈ TBRi,m,
0 otherwise.

TBRi,m = BRi

(
m−1∑
`=0

Pr(Poisson(τ) = `)πPCH−i,`

)

Behavioral Game Theory Based on joint work with James Wright, Slide 21



Recap Computing CE Behavioral Game Theory Models Experimental Setup Model Comparisons Bayesian Analysis

BGT model: QLk

QLk model [Stahl & Wilson 1994] parameters: (α1, α2, λ1, λ2, λ1(2))

Distribution of level [2, 1, 0] agents is [α2, α1, (1− α1 − α2)]

Each agent quantally responds to next-lower level.

Each QLk agent level has its own precision (λk), and its own
beliefs about lower-level agents’ precisions (λ`(k)).

πQLki,0 (ai) = |Ai|−1,

πQLki,1 = QBRi(π
QLk
−i,0 , λ1),

πQLkj,1(2) = QBRj(π
QLk
−j,0 , λ1(2)),

πQLki,2 = QBRi(π
QLk
−i,1(2), λ2).

Behavioral Game Theory Based on joint work with James Wright, Slide 22
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Prediction using Nash equilibrium

We would like to compare BGT models’ prediction
performance to Nash equilibrium.

Unmodified Nash equilibrium is not suitable for predictions:
1 Games often have multiple Nash equilibria.
2 A Nash equilibrium will often assign probability 0 to some

actions.

We constructed two different Nash-based models to deal with
multiple equilibria:

UNEE (Uniform Nash Equilibrium with Error):

Predict the average of all Nash equilibria, + error.

NNEE (Nondeterministic Nash Equilibrium with Error):

Predict the post-hoc “best” Nash equilibrium, + error.

Both models avoid probability 0 predictions via a tunable error
probability.

Behavioral Game Theory Based on joint work with James Wright, Slide 23
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Experimental setup: Overview

What do we need to compare predictive models?

1 Metric to measure performance

2 Test to evaluate generalization performance

3 Experimental data describing real human play

Key issue: must set models’ free parameters using data (a tricky
optimization problem), then test generalization performance.

Behavioral Game Theory Based on joint work with James Wright, Slide 25
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1. Performance Metric

We score the performance of a model by the likelihood of the
test data:

P(Dtest | M,
#»

θ ∗).

To evaluate this score (and make meaningful model
predictions) we must choose the parameters to maximize the
likelihood of the training data:

#»

θ ∗ = argmax
#»
θ

P(Dtrain | M,
#»

θ ).

Behavioral Game Theory Based on joint work with James Wright, Slide 26
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2. Test to evaluate Generalization Performance

We estimate generalization performance using 10-fold
cross-validation.

Problem: this estimate may depend upon the particular
partition into folds.

We average over multiple (again, 10) cross-validation runs.

We can then compute 95% confidence interval by assuming a
t-distribution of these averages [Witten & Frank 2000].

This assumption is validated by the law of large numbers as
the number of cross-validation repetitions grows.

Behavioral Game Theory Based on joint work with James Wright, Slide 27
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3. Experimental data

Subjects played 2-player normal form games once each.

Each action by an individual player is a single observation.

Data from six experimental studies, plus a combined dataset:

SW94: 400 observations from [Stahl & Wilson 1994]
SW95: 576 observations from [Stahl & Wilson 1995]
CGCB98: 1296 observations from [Costa-Gomes et al. 1998]
GH01: 500 observations from [Goeree & Holt 2001]
CVH03: 2992 observations from [Cooper & Van Huyck 2003]
RPC09: 1210 observations from [Rogers et al. 2009]
ALL6: All 6974 observations

Behavioral Game Theory Based on joint work with James Wright, Slide 28
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Model comparisons: Nash equilibrium vs. BGT
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UNEE almost always worse than every BGT model
(exceptions: GH01, SW95).

Even NNEE worse than QLk and QRE in most datasets.
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Model comparisons: Lk and CH vs. QRE
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Lk and Poisson-CH performance was roughly similar.
No consistent ordering between Lk/Poisson-CH and QRE.

Iterative strategic reasoning and quantal response appear to
capture distinct phenomena.
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Model comparisons: QLk
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We would expect a model with both iterative and quantal
response components to perform best.
That is the case: QLk is the best predictive model on almost
every dataset.
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Taking Stock of What We Have Done

Take-home message so far:

QLk is the best of the models for prediction.

For the rest of the talk, we will concentrate on gaining a
deeper understanding of QLk. We will:

use Bayesian methods to understand QLk’s parameter space

determining which ranges of values parameters can take
identifying the most important parameters

indulge ourselves by digressing to consider Poisson-CH ©

Behavioral Game Theory Based on joint work with James Wright, Slide 34
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Refresher: QLk’s Parameters

QLk has 5 different parameters:

α1: Proportion of level-1 agents.

α2: Proportion of level-2 agents.

λ1: Precision of level-1 agents.

λ2: Precision of level-2 agents.

λ1(2): Level-2 agents’ belief about level-1 agents’ precision.

πQLki,0 (ai) = |Ai|−1,

πQLki,1 = QBRi(π
QLk
−i,0 , λ1),

πQLkj,1(2) = QBRj(π
QLk
−j,0 , λ1(2)),

πQLki,2 = QBRi(π
QLk
−i,1(2), λ2).

Behavioral Game Theory Based on joint work with James Wright, Slide 35
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Bayesian Sensitivity Analysis

Two questions:
1 How sure are we about the parameter values we fit?

That is, how strongly does the data argue for particular
parameter values?

2 How important are the different parameters?

We say that a parameter is important if the model’s
predictions are substantially degraded if we change its value.

Behavioral Game Theory Based on joint work with James Wright, Slide 36
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Posterior distributions

Maximum likelihood only tells us the most likely parameter
setting, given the data.

The posterior distribution over parameter settings describes
the relative probability (normalized likelihoods) of all possible
parameter settings.

Individual parameters can be analyzed by inspecting the
marginal posterior distribution.

Flat distributions indicate uncertainty about parameter values.
Sharp distributions indicate a high degree of certainty.

Behavioral Game Theory Based on joint work with James Wright, Slide 37
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Posterior distributions: Monte Carlo sampling

The posterior distribution rarely has an analytic
representation.

We use Monte Carlo sampling to draw an approximate sample
of values from the joint posterior distribution.

Expectations taken over these approximate samples are
unbiased estimators of the true expectations.

Behavioral Game Theory Based on joint work with James Wright, Slide 38
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Warm-up: Poisson-CH

Regarding the single parameter (τ) for the Poisson-CH model:

“Indeed, values of τ between 1 and 2 explain empirical
results for nearly 100 games, suggesting that a τ value of
1.5 could give reliable predictions for many other games
as well.” [Camerer et al. 2004]

Behavioral Game Theory Based on joint work with James Wright, Slide 39
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Warm-up: Poisson-CH’s Posterior Distribution
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Our analysis gives 99% posterior probability that the best value of
τ is 0.8 or less.
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Posterior distributions: QLk
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Precisions

λ1λ2λ1(2)

Some surprises:
1 α1, α2: Best fits predict more level-2 agents than level-1.
2 λ1 is not very identifiable from data; multimodal.
3 λ1, λ2: Level-2 agents have lower precision than level-1 agents.
4 λ1, λ1(2): Level-2 agents’ beliefs are very wrong.
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Some surprises:
1 α1, α2: Best fits predict more level-2 agents than level-1.
2 λ1 is not very identifiable from data; multimodal.

3 λ1, λ2: Level-2 agents have lower precision than level-1 agents.
4 λ1, λ1(2): Level-2 agents’ beliefs are very wrong.
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Posterior distributions: QLk
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Some surprises:
1 α1, α2: Best fits predict more level-2 agents than level-1.
2 λ1 is not very identifiable from data; multimodal.
3 λ1, λ2: Level-2 agents have lower precision than level-1 agents.
4 λ1, λ1(2): Level-2 agents’ beliefs are very wrong.
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Sensitivity measures: Main and total effect

Definition

The main effect of a parameter θj is the percentage of variance in
the prediction that is reduced when θj is fixed to its true value.

Problem: If a parameter has most of its influence from
interactions with other parameters, it will have a low main effect.

Could compute second-order effects, third-order, . . .

There are exponentially many of these!

Definition

The total effect of a parameter θj is the sum of all main and
higher-order effects that θj participates in.

We estimate both of these quantities using Monte Carlo sampling.
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Parameter importance: QLk
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High interaction effects for all parameters.

Precision parameters influence mostly through interactions.

Proportion parameters ( #»α) about twice as important as
precision parameters (λ1, λ2, λ1(2)).
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Homogeneous QLk

QLk is not very sensitive to its individual precision parameters.

The precision parameters are also hard to identify.

Would a single precision parameter λ serve just as well?

Definition (Homogeneous QLk model)

πHQLki,0 (ai) = |Ai|−1,

πHQLki,1 = QBRi(π
HQLk
−i,0 , λ),

πHQLki,2 = QBRi(π
HQLk
−i,1 , λ).
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Homogeneous QLk: Parameter importance
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Virtually no interaction effects.

Proportion parameters ( #»α) still about twice as important as
precision (λ).
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Thinking back to QLk
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Recall...

α1, α2: Best fits predict more level-2 agents than level-1.

λ1 is not very identifiable from data; multimodal.

λ1, λ2: Level-2 agents have lower precision than level-1 agents.

λ1, λ1(2): Level-2 agents’ beliefs are very wrong.
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Homogeneous QLk: Posterior distribution
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More agents of type 1 than 2.

More confident identification of precision (λ):

Unimodal;
Narrower confidence region.
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Homogeneous QLk: Performance
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Performance of H-QLk and QLk are similar; H-QLk still
outperforms all other models.
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Summary

Compared predictive performance of four BGT models.

BGT models typically predict human behavior better than
Nash equilibrium-based models.
QLk has best performance of the four.

Bayesian sensitivity analysis of parameters.

Best parameter for Poisson-CH is likely much lower than
previously thought.
Parameters for QLk are counterintuitive, hard to identify,
interaction-laden.
Using a single precision for all agents yields better more
intuitive parameter values, similar predictive performance.
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