Game Theory Intro

Lecture 3

Lecture Overview

Self-interested agents

2 What is Game Theory?

3 Example Matrix Games

Self-interested agents

- What does it mean to say that an agent is self-interested?
 - not that they want to harm other agents
 - not that they only care about things that benefit them
 - that the agent has its own description of states of the world that it likes, and that its actions are motivated by this description

Self-interested agents

- What does it mean to say that an agent is self-interested?
 - not that they want to harm other agents
 - not that they only care about things that benefit them
 - that the agent has its own description of states of the world that it likes, and that its actions are motivated by this description
- We capture this by saying that each agent has a utility function: a mapping from states of the world to real numbers, indicating level of happiness with that state of the world
 - quantifies degree of preference across alternatives
 - allows us to understand the impact of uncertainty on these preferences
 - Decision-theoretic rationality: take actions to maximize expected utility.

Why Utility?

• Why would anyone argue with the idea that an agent's preferences could be described using a utility function?

Why Utility?

- Why would anyone argue with the idea that an agent's preferences could be described using a utility function?
 - why should a single-dimensional function be enough to explain preferences over an arbitrarily complicated set of alternatives?
 - Why should an agent's response to uncertainty be captured purely by the expected value of his utility function?
- It turns out that the claim that an agent has a utility function is substantive.
- There's a famous theorem (von Neumann & Morgenstern, 1944) that derives the existence of a utility function from a more basic preference ordering and axioms on such orderings.
 - see Theorem 3.1.18 in the book, which includes a proof.

Lecture Overview

Self-interested agents

- 2 What is Game Theory?
- 3 Example Matrix Games

• What is it?

- What is it?
 - mathematical study of interaction between rational, self-interested agents

- What is it?
 - mathematical study of interaction between rational, self-interested agents

• Why is it called non-cooperative?

- What is it?
 - mathematical study of interaction between rational, self-interested agents

- Why is it called non-cooperative?
 - while it's most interested in situations where agents' interests conflict, it's not restricted to these settings
 - the key is that the individual is the basic modeling unit, and that individuals pursue their own interests
 - cooperative/coalitional game theory has teams as the central unit, rather than agents

Lecture 3. Slide 6

Should you send your packets using correctly-implemented TCP (which has a "backoff" mechanism) or using a defective implementation (which doesn't)?

- Consider this situation as a two-player game:
 - both use a correct implementation: both get 1 ms delay
 - one correct, one defective: 4 ms delay for correct, 0 ms for defective
 - both defective: both get a 3 ms delay.

Game Theory Intro

Should you send your packets using correctly-implemented TCP (which has a "backoff" mechanism) or using a defective implementation (which doesn't)?

- Consider this situation as a two-player game:
 - both use a correct implementation: both get 1 ms delay
 - one correct, one defective: 4 ms delay for correct, 0 ms for defective
 - both defective: both get a 3 ms delay.
- Play this game with someone near you. Then find a new partner and play again. Play five times in total.

4 □ > 4 를 > 4 볼 > 1 볼 - 4 및 수입

- Consider this situation as a two-player game:
 - both use a correct implementation: both get 1 ms delay
 - one correct, one defective: 4 ms delay for correct, 0 ms for defective
 - both defective: both get a 3 ms delay.
- Questions:
 - What action should a player of the game take?
 - Would all users behave the same in this scenario?
 - What global patterns of behaviour should the system designer expect?
 - Under what changes to the delay numbers would behavior be the same?
 - What effect would communication have?
 - Repetitions? (finite? infinite?)
 - Does it matter if I believe that my opponent is rational?

Defining Games

Self-interested agents

- Finite, *n*-person game: $\langle N, A, u \rangle$:
 - N is a finite set of n players, indexed by i
 - $A = A_1 \times ... \times A_n$, where A_i is the action set for player i
 - $a \in A$ is an action profile, and so A is the space of action profiles
 - $u=\langle u_1,\ldots,u_n\rangle$, a utility function for each player, where $u_i:A\mapsto\mathbb{R}$
- Writing a 2-player game as a matrix:
 - row player is player 1, column player is player 2
 - rows are actions $a \in A_1$, columns are $a' \in A_2$
 - cells are outcomes, written as a tuple of utility values for each player

Example Matrix Games

Games in Matrix Form

Here's the TCP Backoff Game written as a matrix ("normal form").

$$C$$
 D
 C $-1,-1$ $-4,0$
 D $0,-4$ $-3,-3$

Lecture Overview

Self-interested agents

- 2 What is Game Theory?
- 3 Example Matrix Games

More General Form

Prisoner's dilemma is any game

$$egin{array}{c|c} C & D \\ \hline C & a,a & b,c \\ \hline D & c,b & d,d \\ \hline \end{array}$$

with c > a > d > b.

Games of Pure Competition

Players have exactly opposed interests

- There must be precisely two players (otherwise they can't have exactly opposed interests)
- For all action profiles $a \in A$, $u_1(a) + u_2(a) = c$ for some constant c
 - Special case: zero sum
- Thus, we only need to store a utility function for one player
 - in a sense, it's a one-player game

Matching Pennies

One player wants to match; the other wants to mismatch.

	Heads	Tails
Heads	1	-1
Tails	-1	1

Matching Pennies

One player wants to match; the other wants to mismatch.

	Heads	Tails
Heads	1	-1
Tails	-1	1

Play this game with someone near you, repeating five times.

Rock-Paper-Scissors

Generalized matching pennies.

	Rock	Paper	Scissors
Rock	0	-1	1
Paper	1	0	-1
Scissors	-1	1	0

...Believe it or not, there's an annual international competition for this game!

Games of Cooperation

Players have exactly the same interests.

- no conflict: all players want the same things
- $\forall a \in A, \forall i, j, u_i(a) = u_j(a)$
- we often write such games with a single payoff per cell
- why are such games "noncooperative"?

Coordination Game

Which side of the road should you drive on?

	Left	Right
Left	1	0
Right	0	1

Coordination Game

Which side of the road should you drive on?

	Left	Right
Left	1	0
Right	0	1

Play this game with someone near you. Then find a new partner and play again. Play five times in total.

General Games: Battle of the Sexes

The most interesting games combine elements of cooperation and competition.

	В	F
3	2,1	0,0
F	0,0	1, 2

General Games: Battle of the Sexes

The most interesting games combine elements of cooperation and competition.

$$\begin{array}{c|cccc}
 & B & F \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\$$

Play this game with someone near you. Then find a new partner and play again. Play five times in total.