CPSC 532L, Winter 2011 Homework \#2

1. [10 points] (Perfect Information Games)

Consider the centipede game in Figure 1. It differs from the one appearing in the course reader only in that the payoff pair $(4,3)$ has been changed to $(5,3)$.

Figure 1: A centipede game.
Player 2 is one of two types: (i) With probability p player 2 is a rational player who follows the unique subgame perfect equilibrium strategy. (ii) With probability $1-p$ player 2 is "irrational" and simply flips a fair coin at each of his choice points. For every possible value of p, find a best response (possibly mixed) strategy for player 1 to this player 2. (Obviously there will be ranges of p for which a strategy is always a best response.) Show your work.

2. [10 points] (Imperfect Information Games)

Each part of this problem will use the two-player game of imperfect information given in Figure 2. However, the meaning of the numbers at the leaves will differ. In part (a), we consider a common-payoff game. Thus, the value at a leaf defines the payoff of both players. In parts (b) and (c), we switch to a zero-sum game. In that case, the value of a leaf defines the payoff of player 1, and the negative of the payoff of player 2. In each part, briefly justify your answer.

Figure 2: An imperfect information game in which each player has a single information set.
(a) For the common-payoff game defined by Figure 2, list all Nash equilibrium pure strategy profiles ("none exists" is a possible answer).
(b) For the zero-sum game defined by Figure 2, list all Nash equilibrium pure strategy profiles ("none exists" is a possible answer).
(c) Now we will allow mixed strategies. For the zero-sum game defined by Figure 2, find all Nash equilibrium (possibly mixed) strategy profiles. Note, listing all Nash equilibria is rather arduous considering that there are an infinite number of equilibria. Instead, you are supposed to characterize the set of all mixed strategy Nash equilibria (for example, using a variable p and giving ranges on p for which the equilibria holds). Two minor hints here: (1) the characterization is simple, and (2) use the fact that the game is zero-sum to limit the space of strategy profiles you have to consider.

3. [20 points] (Repeated Prisoners' Dilemma)

Consider the Prisoners dilemma game. Specifically, the following game is going to be played repeatedly:

		Player 2	
		c	d
Player 1	C	$-1,-1$	$-4,0$
	D	$0,-4$	$-3,-3$

(a) Suppose the game will be played three times.
i. Find (the only) subgame perfect Nash equilibrium. (HINT: make sure you write the equilibrium completely and precisely.)
ii. How does the equilibrium change if the game is repeated n times? (n is common knowledge.)
(b) Now suppose that the game is going to be repeated forever. Suppose the overall payoff is the future discounted rewards from individual games, with a discount factor $0<$ $\alpha<1$. Construct a set of strategies that would lead to both players cooperating every period, and show that these strategies are in Nash equilibrium when the parameter α is close to 1 .
(c) Now suppose there is no discounting $(\alpha=1)$ but each period there is a probability $9 / 10$ that the game continues and a probability of $1 / 10$ that the game will finish. Are the strategies proposed in part (b) still a Nash equilibrium?
(d) An alternative commonly used way to calculate payoffs in an infinitely repeated game is the limit of the means reward, sometimes also known as the average reward.
For the pair of strategies you used in part (b), is the payoff in the infinitely repeated game under the limit of means criterion well defined? If so, what is it? Do your strategies still constitute a Nash equilibrium?
4. [20 points] Consider a problem where two students must simultaneously decide between working on their research in their (separate) offices and going to Koerner's. Each student has a preference for one of the two choices. The students don't know each other's preferences, but know that they are drawn from a commonly known joint distribution. This distribution is described in Table 1. Starting from a baseline utility of zero, a student gains 2 units of utility if she goes to the place that she prefers. However, the students are working on a course project together, and so both students lose 3 units of utility if they
both attend the bar and reveal to each other that they were slacking off (independent of whether they gained 2 units of utility based on their preference). Thus, for example, if they both prefer bar, and they both go to the bar, they each get a utility of $0+2-3=-1$.

Student 1	Student 2	Probability
b_{1}	b_{2}	0.1
b_{1}	$\neg b_{2}$	0.6
$\neg b_{1}$	b_{2}	0.1
$\neg b_{1}$	$\neg b_{2}$	0.2

Table 1: The common prior joint distribution on student preferences. b_{i} means that student i prefers to go to the bar, $\neg b_{i}$ means she prefers to work in the lab.
(a) Model the setting as a Bayesian game. Recall that you need a set of agents N, a set of actions A, a set of types for each agent Θ_{i}, a probability function mapping from one agent's type to a distribution over the types of the other agent(s) $p_{i}: \Theta_{i} \rightarrow \Delta\left(\Theta_{-i}\right)$, and a payoff function for each agent mapping from the agents' joint actions and types to a real number $u_{i}: A \times \Theta \rightarrow \mathbb{R}$. Denote by B and L the actions of going to the bar and staying in the lab, respectively. Let $N=\{1,2\}$ be the set of agents, G the set of games, $\Theta=\Theta_{1} \times \Theta_{2}$ the set of joint agent types, and $I=\left\{I_{1}, I_{2}\right\}$ the partitions over games for the two agents. Your entire answer can be a figure similar to Figure 6.7, which shows the games, the common prior, and the partitions of the agents.
(b) Find all Bayes-Nash equilibria of this game.
(c) Draw the payoff matrix of the induced normal form of the game and justify why your equilibrium/equilibria hold(s). Explicitly state the meaning of an action in the induced normal form game; please write the actions in alphabetical order.
(d) i. What is the ex-ante expected utility to player 1 of the strategy profile $(L B, B L)$? ("not enough information" is a potential answer)
ii. What is the ex-interim utility to player 1 of the strategy profile $(L B, B L)$ if player 1 has type b_{1} ? ("not enough information" is a potential answer)
iii. What is the ex-post utility to player 1 of the strategy profile $(L B, B L)$ if player 1 has type b_{1} ? ("not enough information" is a potential answer)
5. [10 points] Correlated Equilibria

Show that any payoff profile that can be achieved in a correlated equilibrium for which π - the joint distribution over tuples of random variables - is rational ${ }^{1}$, can also be achieved in a Nash Equilibrium of the infinitely repeated game (for average rewards).

[^0]
Academic Honesty Form

For this assignment, it is acceptable to collaborate with other students provided that you write up your solutions independently. The only reference materials that you can use are the course notes and textbook, and the reference textbooks listed on the course web page. In particular, getting help from students or course materials from previous years is not acceptable.
List any people you collaborated with:

List any non-course materials you refered to:
\qquad
\qquad
\qquad

Signature:

Fill in this page and include it with your assignment submission.

[^0]: ${ }^{1}$ That is, the probability of each joint realization of the random variables is a rational number.

