CPSC 532L, Winter 2011 Homework #1

1. [10 points] (Normal Form Games)

Consider the following game:

		Player 2	
		C	D
Player 1	Α	-21,0	10,10
	В	6,6	0,-21

Where the first number in each square is the payoff of player 1 and the second number is player 2's payoff.

- (a) Find all Pareto optimal pure strategy profiles.
- (b) Find the pure strategy Nash equilibria.
- (c) Find all mixed-strategy Nash equilibria.
- (d) Which of the above equilibria do you prefer? Suppose player 2 has decided to play according to one of the equilibria that you found in part (b) (but you do not know which.) What would you play as player 1?

2. [10 points] (More Normal Form Games)

- (a) What must be true of an action a (in terms of dominance) before it can be in the support of a mixed strategy Nash equilibrium?
- (b) Prove or disprove the following statement: Any weakly dominant action a_i for player i must be played in all Nash equilibria.
- (c) Consider the following game:

		Player 2	
		${ m L}$	\mathbf{R}
Player 1	Τ	$_{\mathrm{a,e}}$	b,f
	В	$_{\mathrm{c,g}}$	$_{ m d,h}$

Where the first number in each square is the payoff of player 1 and the second number is player 2's payoff.

- i. What (in)equalities must hold for the game to have exactly one pure strategy Nash equilibrium (BL), which is Pareto dominated by a pure strategy profile?
- ii. What (in)equalities must hold for a Nash equilibrium to exist where player 1 only plays T but player 2 mixes over L and R (playing L with probability p)?

3. [20 points] (Maxmin and Minmax)

Consider a game with n players. Denote the maxmin strategy for player i as \bar{s}_i and the maxmin value of i as $\bar{v}(i)$. Denote the minmax strategy of some agent $j \neq i$ against i as $\underline{s}_{j,i}$ and the minmax value of i as $\underline{v}(i)$. Denote by $\underline{s}_{-i,i}$ the minmax strategy profile of all players other than i, denoted by -i, against i.

- (a) Prove that for all games, the maxmin value of player i is no greater than the minmax value of player i, i.e. $\bar{v}(i) \leq \underline{v}(i)$.
- (b) Prove that in all two-player games the maxmin value of player i is equal to the minmax value of player i, in other words $\bar{v}(i) = \underline{v}(i)$. Hint: you can use the minmax theorem, but note that it only applies to two-player zero-sum games.
- (c) Now we demonstrate that the result in (b) does not apply to n-player games with n>2, by the following counterexample. Consider the following three-player game; player 1 chooses the row, player 2 chooses the column, and player 3 chooses the matrix.

	L	R
Т	1,4,0	1,2,-2
В	5,6,0	5, 5, 0
	U	

	L	R
Τ	3,3,0	2,6,0
В	3,4,-2	5,3,0
	D	

Compute $\bar{v}(3)$, and show that $\bar{v}(3) < \underline{v}(3)$. (Hint: the minmax value is hard to calculate for this game, but you don't need to compute it exactly in order to show that $\bar{v}(3) < \underline{v}(3)$.)

4. [15 points] (Rationalizability, Correlated Equilibria) Consider the following two-player game:

		Player 2		
		D	\mathbf{E}	\mathbf{F}
	A	9,10	3,5	5,4
Player 1	В	1,6	17,9	$5,4 \\ 8,5$
	\mathbf{C}	0,5	2,6	6,13

Where the first number in each square is the payoff of player 1 and the second number is player 2's payoff.

- (a) Find a pure strategy a_2 for player 2 and prove that it is not rationalizable.
- (b) Find a different pure strategy a'_1 of player 1 and prove that it is rationalizable.
- (c) Find a correlated equilibrium of the game where player 1 achieves an expected payoff of 14. As randomizing devices, you have three publicly observable, fair coins: a nickel, a dime and a quarter. You may not use any other randomizing devices.

5. [25 points] (Grading and Peer Review)

Students' grades in CPSC 523A will be determined mainly by the instructor; however, they will also depend on peer-review evaluations performed by other students. For example, students will evaluate each other's performance in class presentations. Because this course focuses on systems in which multiple self-interested agents take strategic action to maximize their rewards, it seems sensible to ask whether such peer-review grading will work. Specifically, what will happen if self-interested students are willing to strategically manipulate their peer reviews to maximize their own grades?

(a) We first introduce a formal model of the peer-review grading scenario. Let $S = \{0, \ldots, N\}$ be the set of participants in CPSC 523A: let 0 denote the instructor, and let $1, \ldots, N$ denote each of the N students in the class. Let α be the fraction of a student's final grade which is determined by the instructor. Let $g: S \times S \setminus \{0\} \mapsto [0, 1]$

be the grading function, where g(i, j) denotes the grade given by participant i to student j. For all $1 \le i \le N$, let g(i, i) = 0. Student j's unadjusted final grade is:

$$f_j = \alpha g(0, j) + \sum_{i=1}^{N} \frac{1 - \alpha}{N - 1} g(i, j)$$

Argue that student j cannot affect f_j by changing $g(j,\cdot)$.

(b) **Grading on a curve:** Let μ and σ denote the mean and standard deviation of final grades. Assume that the instructor wants to curve grades so that the mean is μ' and the standard deviation is σ' . He could do this by giving student j the adjusted final grade:

$$\frac{\sigma'(f_j-\mu)}{\sigma}+\mu'$$

However, let's keep things simple in this section and assume that the professor doesn't want to change the standard deviation. He can thus assign adjusted final grades as follows:

$$f_i' = f_i + (\mu' - \mu)$$

- i. Argue that j can affect f'_i by strategically changing $g(j,\cdot)$.
- ii. How should j select values $g(j,\cdot)$ in order to maximize f'_i ?
- iii. Show that the strategy shown as the answer to the previous question is a *strictly dominant strategy*: i.e., each student is strictly better off following this strategy regardless of the peer-review strategies employed by other students.
- (c) Incentive-compatible grading: Define

$$f_{i \sim j} = \begin{cases} \alpha g(0, i) + \left(\sum_{k=1}^{N} \frac{1-\alpha}{N-2} g(k, i)\right) - \frac{1-\alpha}{N-2} g(j, i) & i \neq j; \\ \alpha g(0, i) + \left(\sum_{k=1}^{N} \frac{1-\alpha}{N-1} g(k, i)\right) & i = j. \end{cases}$$

Define $\mu_{\sim j}$ and $\sigma_{\sim j}$ as the mean and standard deviation of $f_{\sim j}$. To try to prevent the manipulation of peer-review grades, the instructor calculates curved grades using these values:

$$f_j^* = \frac{\sigma'(f_j - \mu_{\sim j})}{\sigma_{\sim j}} + \mu'$$

Note that in this case we're allowing the instructor to vary the standard deviation, because it doesn't make things any more complicated :-)

- i. Show that student j cannot affect f_j^* by strategically changing $g(j,\cdot)$.
- ii. Note that when each student j receives the grade f_j^* the mean and standard deviation of the grades are not exactly μ' and σ' . Explain why there is no way of choosing f_j^* which simultaneously satisfies the following properties:
 - A. the mean and standard deviation are exactly μ' and σ' ;
 - B. no student j has incentive to strategically change $g(j,\cdot)$;
 - C. f_j^* is strictly increasing in g(i,j) for all $i \neq j$.

Academic Honesty Form

Fill in this page and include it with your assignment submission.