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Lecture Overview

@ Recap
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Recap

First-Price and Dutch

First-Price and Dutch auctions are strategically equivalent.

@ In both first-price and Dutch, a bidder must decide on the
amount he's willing to pay, conditional on having placed the
highest bid.

o despite the fact that Dutch auctions are extensive-form games,
the only thing a winning bidder knows about the others is that
all of them have decided on lower bids

@ e.g., he does not know what these bids are
o this is exactly the thing that a bidder in a first-price auction
assumes when placing his bid anyway.

@ Note that this is a stronger result than the connection
between second-price and English.
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Recap

Revenue Equivalence

@ Which auction should an auctioneer choose? To some extent,
it doesn’t matter...

Theorem (Revenue Equivalence Theorem)

Assume that each of n risk-neutral agents has an independent
private valuation for a single good at auction, drawn from a
common cumulative distribution F'(v) that is strictly increasing
and atomless on [v,v]. Then any auction mechanism in which

@ the good will be allocated to the agent with the highest
valuation; and

@ any agent with valuation v has an expected utility of zero;

yields the same expected revenue, and hence results in any bidder
with valuation v making the same expected payment.

V.
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Recap

Applying Revenue Equivalence

@ A bidder in a FPA must bid his expected payment conditional
on being the winner of a second-price auction
o if v; is the high value, there are then n — 1 other values drawn
from the uniform distribution on [0, v;]
e thus, the expected value of the second-highest bid is the
first-order statistic of n — 1 draws from [0, v;]:

n+1—k :(n—l)—i—l—(l)(v):n—lv_

ntl M n—1)+1 n

@ This provides a basis for our earlier claim about n-bidder
first-price auctions.
o However, we'd still have to check that this is an equilibrium
o The revenue equivalence theorem doesn’t say that every
revenue-equivalent strategy profile is an equilibrium!
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Optimal Auctions

Lecture Overview

© Optimal Auctions
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Optimal Auctions

Fun game

@ Pass around the jar of coins and try to determine how much
money is inside.

@ Once everyone has seen it, we'll play a game...
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Optimal Auctions

Optimal Auctions

@ So far we have only considered efficient auctions.
@ What about maximizing the seller's revenue?
e she may be willing to risk failing to sell the good even when
there is an interested buyer
e she may be willing sometimes to sell to a buyer who didn’t
make the highest bid
@ Mechanisms which are designed to maximize the seller's
expected revenue are known as optimal auctions.
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Optimal Auctions

Optimal auctions setting

@ independent private valuations

o risk-neutral bidders
@ each bidder i's valuation drawn from some strictly increasing
cumulative density function F;(v) (PDF f;(v))
o we allow F; # Fj: asymmetric auctions

@ the seller knows each F;
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Optimal Auctions

Designing optimal auctions

Definition (virtual valuation)

Bidder i's virtual valuation is ¥;(v;) = v; — %;(SZ)

Definition (bidder-specific reserve price)

Bidder ¢'s bidder-specific reserve price 7 is the value for which

wZ(T’:) = 0.
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Optimal Auctions

Designing optimal auctions

Definition (virtual valuation)

Bidder 4s virtual valuation is 4;(v;) = v; — *7E.

Definition (bidder-specific reserve price)

Bidder ¢'s bidder-specific reserve price 7 is the value for which

1/)1(7“:) = 0.

| A\

Theorem

The optimal (single-good) auction is a sealed-bid auction in which
every agent is asked to declare his valuation. The good is sold to
the agent i = argmax; 1;(0;), as long as v; > r}. If the good is
sold, the winning agent i is charged the smallest valuation that he
could have declared while still remaining the winner:

inf{v; : i(vf) > 0 and Vj # i, i(v}) > 1;(0;)}.
v




Optimal Auctions

Analyzing optimal auctions

Optimal Auction:

@ winning agent: i = argmax; 1;(?;), as long as v; > r}.
@ ¢ is charged the smallest valuation that he could have declared
while still remaining the winner,

inf{v} : ¢;(v}) > 0 and Vj # i, 1 (v}) > ¥;(9;)}-

e Is this VCG?
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Optimal Auctions

Analyzing optimal auctions

Optimal Auction:

@ winning agent: i = argmax; 1;(?;), as long as v; > r}.
@ ¢ is charged the smallest valuation that he could have declared
while still remaining the winner,

inf{v} : ¢;(v}) > 0 and Vj # i, 1 (v}) > ¥;(9;)}-

e Is this VCG?

e No, it's not efficient.
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Optimal Auctions

Analyzing optimal auctions

Optimal Auction:
@ winning agent: i = argmax; 1;(?;), as long as v; > r}.

@ ¢ is charged the smallest valuation that he could have declared
while still remaining the winner,

inf{v} : ¢;(v}) > 0 and Vj # i, 1 (v}) > ¥;(9;)}-

o Is this VCG?
e No, it's not efficient.
@ How should bidders bid?
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Optimal Auctions

Analyzing optimal auctions

Optimal Auction:
@ winning agent: i = argmax; 1;(?;), as long as v; > r}.
@ ¢ is charged the smallest valuation that he could have declared
while still remaining the winner,

inf{v} : ¢;(v}) > 0 and Vj # i, 1 (v}) > ¥;(9;)}-

e Is this VCG?

e No, it's not efficient.
@ How should bidders bid?

e it's a second-price auction with a reserve price, held in virtual
valuation space.

e neither the reserve prices nor the virtual valuation
transformation depends on the agent's declaration

e thus the proof that a second-price auction is dominant-strategy
truthful applies here as well.
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Optimal Auctions

Analyzing optimal auctions

Optimal Auction:

@ winning agent: i = argmax; 1;(?;), as long as v; > r}.
@ ¢ is charged the smallest valuation that he could have declared
while still remaining the winner,

inf{v} : ¥;(v}) > 0 and Vj # ¢, ¥;(v}) > ¥;(05)}

@ What happens in the special case where all agents’ valuations
are drawn from the same distribution?
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Optimal Auctions

Analyzing optimal auctions

Optimal Auction:

@ winning agent: i = argmax; 1;(?;), as long as v; > r}.
@ ¢ is charged the smallest valuation that he could have declared
while still remaining the winner,

inf{v} : ¥;(v}) > 0 and Vj # ¢, ¥;(v}) > ¥;(05)}

@ What happens in the special case where all agents’ valuations
are drawn from the same distribution?
e a second-price auction with reserve price r* satisfying
L-Fi(r") _

*
L A )
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Optimal Auctions

Analyzing optimal auctions

Optimal Auction:

@ winning agent: i = argmax; 1;(?;), as long as v; > r}.
@ ¢ is charged the smallest valuation that he could have declared
while still remaining the winner,

inf{v} : ¥;(v}) > 0 and Vj # ¢, ¥;(v}) > ¥;(05)}

@ What happens in the special case where all agents’ valuations
are drawn from the same distribution?
e a second-price auction with reserve price r* satisfying
1-Fi(r) _
fi(rx)
@ What happens in the general case?

r* —
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Optimal Auctions

Analyzing optimal auctions

Optimal Auction:

@ winning agent: i = argmax; 1;(?;), as long as v; > r}.
@ ¢ is charged the smallest valuation that he could have declared
while still remaining the winner,

inf{vy : ¢;(vy) > 0 and Vj # i, ¥;(v]) > ¥;(9;)}.

@ What happens in the special case where all agents’ valuations
are drawn from the same distribution?
e a second-price auction with reserve price r* satisfying
g AZFr)
fir*)
@ What happens in the general case?
e the virtual valuations also increase weak bidders’ bids, making
them more competitive.
e low bidders can win, paying less
e however, bidders with higher expected valuations must bid

more aggressively
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Beyond IPV

Lecture Overview

© Beyond IPV and risk-neutrality
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Beyond IPV

Fun game

@ Look at the jar of coins

@ Bid for it using real money in a sealed-bid second-price
auction.
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Beyond IPV

Going beyond IPV

@ common value model

e motivation: oil well
e winner's curse
e things can be improved by revealing more information

@ general model

e IPV + common value
e example motivation: private value plus resale
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Beyond IPV

Affiliated Values

@ Definition: a high value of one bidder’s signal makes high
values of other bidders’ signals more likely

e common value model is a special case

o generally, ascending auctions lead to higher expected prices
than second price, which in turn leads to higher expected
prices than first price

e intuition: winner's gain depends on the privacy of his
information.

e The more the price paid depends on others' information
(rather than expectations of others’ information), the more
closely this price is related to the winner's information, since
valuations are affiliated

e thus the winner loses the privacy of his information, and can
extract a smaller “information rent”
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Beyond IPV

Affiliated Values

@ Definition: a high value of one bidder’s signal makes high
values of other bidders’ signals more likely

e common value model is a special case

o generally, ascending auctions lead to higher expected prices
than second price, which in turn leads to higher expected
prices than first price

e intuition: winner's gain depends on the privacy of his
information.

e The more the price paid depends on others' information
(rather than expectations of others’ information), the more
closely this price is related to the winner's information, since
valuations are affiliated

e thus the winner loses the privacy of his information, and can
extract a smaller “information rent”

@ Linkage principle: if the seller has access to any private source
of information which will be affiliated with the bidders’

valuations, she should precommit to reveal it honestly.
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Beyond IPV

Risk Attitudes

What kind of auction would the auctioneer prefer?
@ Buyer is not risk neutral:

e no change under various risk attitudes for second price

e in first-price, increasing bid amount increases probability of
winning, decreases profit. This is good for risk-averse bidder,
bad for risk-seeking bidder.

o Risk averse, IPV: First > [Japanese = English = Second)]

o Risk seeking, IPV: Second > First
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Beyond IPV

Risk Attitudes

What kind of auction would the auctioneer prefer?
@ Buyer is not risk neutral:

e no change under various risk attitudes for second price

e in first-price, increasing bid amount increases probability of
winning, decreases profit. This is good for risk-averse bidder,
bad for risk-seeking bidder.

o Risk averse, IPV: First > [Japanese = English = Second)]

o Risk seeking, IPV: Second > First

@ Auctioneer is not risk neutral:

e revenue is fixed in first-price auction (the expected amount of
the second-highest bid)

@ revenue varies in second-price auction, with the same expected
value

e thus, a risk-averse seller prefers first-price to second-price.
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