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First-Price and Dutch

Theorem

First-Price and Dutch auctions are strategically equivalent.

In both first-price and Dutch, a bidder must decide on the
amount he’s willing to pay, conditional on having placed the
highest bid.

despite the fact that Dutch auctions are extensive-form games,
the only thing a winning bidder knows about the others is that
all of them have decided on lower bids

e.g., he does not know what these bids are
this is exactly the thing that a bidder in a first-price auction
assumes when placing his bid anyway.

Note that this is a stronger result than the connection
between second-price and English.
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Revenue Equivalence

Which auction should an auctioneer choose? To some extent,
it doesn’t matter...

Theorem (Revenue Equivalence Theorem)

Assume that each of n risk-neutral agents has an independent
private valuation for a single good at auction, drawn from a
common cumulative distribution F (v) that is strictly increasing
and atomless on [v, v̄]. Then any auction mechanism in which

the good will be allocated to the agent with the highest
valuation; and

any agent with valuation v has an expected utility of zero;

yields the same expected revenue, and hence results in any bidder
with valuation v making the same expected payment.
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Applying Revenue Equivalence

A bidder in a FPA must bid his expected payment conditional
on being the winner of a second-price auction

if vi is the high value, there are then n− 1 other values drawn
from the uniform distribution on [0, vi]
thus, the expected value of the second-highest bid is the
first-order statistic of n− 1 draws from [0, vi]:

n+ 1− k
n+ 1

vmax =
(n− 1) + 1− (1)

(n− 1) + 1
(vi) =

n− 1
n

vi

This provides a basis for our earlier claim about n-bidder
first-price auctions.

However, we’d still have to check that this is an equilibrium
The revenue equivalence theorem doesn’t say that every
revenue-equivalent strategy profile is an equilibrium!

Advanced Single-Good Auctions Lecture 20, Slide 5



Recap Optimal Auctions Beyond IPV

Lecture Overview

1 Recap

2 Optimal Auctions

3 Beyond IPV and risk-neutrality

Advanced Single-Good Auctions Lecture 20, Slide 6



Recap Optimal Auctions Beyond IPV

Fun game

Pass around the jar of coins and try to determine how much
money is inside.

Once everyone has seen it, we’ll play a game...
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Optimal Auctions

So far we have only considered efficient auctions.

What about maximizing the seller’s revenue?

she may be willing to risk failing to sell the good even when
there is an interested buyer
she may be willing sometimes to sell to a buyer who didn’t
make the highest bid

Mechanisms which are designed to maximize the seller’s
expected revenue are known as optimal auctions.
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Optimal auctions setting

independent private valuations

risk-neutral bidders

each bidder i’s valuation drawn from some strictly increasing
cumulative density function Fi(v) (PDF fi(v))

we allow Fi 6= Fj : asymmetric auctions

the seller knows each Fi

Advanced Single-Good Auctions Lecture 20, Slide 9



Recap Optimal Auctions Beyond IPV

Designing optimal auctions

Definition (virtual valuation)

Bidder i’s virtual valuation is ψi(vi) = vi − 1−Fi(vi)
fi(vi)

.

Definition (bidder-specific reserve price)

Bidder i’s bidder-specific reserve price r∗i is the value for which
ψi(r∗i ) = 0.

Theorem

The optimal (single-good) auction is a sealed-bid auction in which
every agent is asked to declare his valuation. The good is sold to
the agent i = arg maxi ψi(v̂i), as long as vi > r∗i . If the good is
sold, the winning agent i is charged the smallest valuation that he
could have declared while still remaining the winner:
inf{v∗i : ψi(v∗i ) ≥ 0 and ∀j 6= i, ψi(v∗i ) ≥ ψj(v̂j)}.
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Analyzing optimal auctions

Optimal Auction:

winning agent: i = arg maxi ψi(v̂i), as long as vi > r∗i .

i is charged the smallest valuation that he could have declared
while still remaining the winner,
inf{v∗i : ψi(v∗i ) ≥ 0 and ∀j 6= i, ψi(v∗i ) ≥ ψj(v̂j)}.

Is this VCG?

No, it’s not efficient.

How should bidders bid?

it’s a second-price auction with a reserve price, held in virtual
valuation space.
neither the reserve prices nor the virtual valuation
transformation depends on the agent’s declaration
thus the proof that a second-price auction is dominant-strategy
truthful applies here as well.

Advanced Single-Good Auctions Lecture 20, Slide 11



Recap Optimal Auctions Beyond IPV

Analyzing optimal auctions

Optimal Auction:

winning agent: i = arg maxi ψi(v̂i), as long as vi > r∗i .

i is charged the smallest valuation that he could have declared
while still remaining the winner,
inf{v∗i : ψi(v∗i ) ≥ 0 and ∀j 6= i, ψi(v∗i ) ≥ ψj(v̂j)}.

Is this VCG?

No, it’s not efficient.

How should bidders bid?

it’s a second-price auction with a reserve price, held in virtual
valuation space.
neither the reserve prices nor the virtual valuation
transformation depends on the agent’s declaration
thus the proof that a second-price auction is dominant-strategy
truthful applies here as well.

Advanced Single-Good Auctions Lecture 20, Slide 11



Recap Optimal Auctions Beyond IPV

Analyzing optimal auctions

Optimal Auction:

winning agent: i = arg maxi ψi(v̂i), as long as vi > r∗i .

i is charged the smallest valuation that he could have declared
while still remaining the winner,
inf{v∗i : ψi(v∗i ) ≥ 0 and ∀j 6= i, ψi(v∗i ) ≥ ψj(v̂j)}.

Is this VCG?

No, it’s not efficient.

How should bidders bid?

it’s a second-price auction with a reserve price, held in virtual
valuation space.
neither the reserve prices nor the virtual valuation
transformation depends on the agent’s declaration
thus the proof that a second-price auction is dominant-strategy
truthful applies here as well.

Advanced Single-Good Auctions Lecture 20, Slide 11



Recap Optimal Auctions Beyond IPV

Analyzing optimal auctions

Optimal Auction:

winning agent: i = arg maxi ψi(v̂i), as long as vi > r∗i .

i is charged the smallest valuation that he could have declared
while still remaining the winner,
inf{v∗i : ψi(v∗i ) ≥ 0 and ∀j 6= i, ψi(v∗i ) ≥ ψj(v̂j)}.

Is this VCG?

No, it’s not efficient.

How should bidders bid?

it’s a second-price auction with a reserve price, held in virtual
valuation space.
neither the reserve prices nor the virtual valuation
transformation depends on the agent’s declaration
thus the proof that a second-price auction is dominant-strategy
truthful applies here as well.

Advanced Single-Good Auctions Lecture 20, Slide 11



Recap Optimal Auctions Beyond IPV

Analyzing optimal auctions

Optimal Auction:

winning agent: i = arg maxi ψi(v̂i), as long as vi > r∗i .

i is charged the smallest valuation that he could have declared
while still remaining the winner,
inf{v∗i : ψi(v∗i ) ≥ 0 and ∀j 6= i, ψi(v∗i ) ≥ ψj(v̂j)}.

What happens in the special case where all agents’ valuations
are drawn from the same distribution?

a second-price auction with reserve price r∗ satisfying

r∗ − 1−Fi(r
∗)

fi(r∗)
= 0.

What happens in the general case?
the virtual valuations also increase weak bidders’ bids, making
them more competitive.
low bidders can win, paying less
however, bidders with higher expected valuations must bid
more aggressively
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Fun game

Look at the jar of coins

Bid for it using real money in a sealed-bid second-price
auction.
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Going beyond IPV

common value model

motivation: oil well
winner’s curse
things can be improved by revealing more information

general model

IPV + common value
example motivation: private value plus resale
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Affiliated Values

Definition: a high value of one bidder’s signal makes high
values of other bidders’ signals more likely

common value model is a special case
generally, ascending auctions lead to higher expected prices
than second price, which in turn leads to higher expected
prices than first price

intuition: winner’s gain depends on the privacy of his
information.
The more the price paid depends on others’ information
(rather than expectations of others’ information), the more
closely this price is related to the winner’s information, since
valuations are affiliated
thus the winner loses the privacy of his information, and can
extract a smaller “information rent”

Linkage principle: if the seller has access to any private source
of information which will be affiliated with the bidders’
valuations, she should precommit to reveal it honestly.
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Risk Attitudes

What kind of auction would the auctioneer prefer?

Buyer is not risk neutral:

no change under various risk attitudes for second price
in first-price, increasing bid amount increases probability of
winning, decreases profit. This is good for risk-averse bidder,
bad for risk-seeking bidder.
Risk averse, IPV: First � [Japanese = English = Second]
Risk seeking, IPV: Second � First

Auctioneer is not risk neutral:

revenue is fixed in first-price auction (the expected amount of
the second-highest bid)
revenue varies in second-price auction, with the same expected
value
thus, a risk-averse seller prefers first-price to second-price.
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