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abstract

Potential games are subclass of strategic normal form games. Each potential
game admits a potential function which is the key idea of potential games. Po-
tential function characterizes special behavior of payoff functions. There are
several notions of potential games. In this paper, I study some notions of po-
tential games and explain the relation between potential games and potential
functions. Among various properties of the potential games, I characterize two
more important ones: existence of Nash equilibrium and convergence of the
learning process to the Nash equilibrium. Two examples are presented in order
to demonstrate the application of potential games in wireless network.

1 Introduction

Potential games were introduced in the seminal work of Monderer and Shapley
in 1996 [1]. These games received increasing attention recently. Various notions
of potential games introduced and studied in the literature. Generalized ordinal,
ordinal, exact, and weighted potential games were introduced in [1]. Voorneveld
et al. studied ordinal potential games and characterized several properties of
these games. The notions of best-response potential games and pseudo-potential
games were studied in [2] and [3], respectively.

A strategic game is a potential game if it admits a potential 1. Potential
functions quantify the difference in the payoff due to unilaterally deviation of
each player either exactly (exact potential games), in sign (ordinal potential
games), or deviation to the best response (best-response potential games). Po-
tential function can be interpreted as a measure of the disagreement among
players, or, equivalently as the drift towards the Nash equilibrium (NE). Poten-
tial function can replace the utility function of different players while preserves
some of the game’s structure like NE and best response.

1In physics, a function P is a potential for vector (Π1, ..., Πn) if
∂Πi(x)

∂xi
=

∂P (x)
∂xi

, where

x = {x1, ..., xn}.
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Potential games possess several special properties. The existence of the
potential function guarantees these properties. Under some conditions, all po-
tential games have pure strategy NE. More interestingly, under some conditions
which are not too tight, every learning process based on best-response of the
players converges to an NE. On other words, starting from an arbitrary point,
the sequence of unilaterally best-responses of players reaches to an NE after
finitely steps.

The focus in this paper is on ordinal and pseudo potential games which are
more applicable in wireless networks. In this paper, I introduce some notions
of potential games and describe how potential functions are defined and related
to the potential games. Two special properties of potential games (i.e., exis-
tence of the NE and convergence of the learning process to NE) are studied with
more details for ordinal and pseudo potential games. The rest of this paper is
organized as follows: In Section 2, I review some notions of potential games.
In section 3, some properties of the potential games are characterized. In Sec-
tion 4, some examples of potential games in wireless network are presented.
Conclusions are given in Section 5.

2 Potential Games

Let Γ = 〈N, Y, u〉 be a strategic normal form game with a finite number of
players. The strategy space and payoff function of player i are denoted by
Yi and ui respectively. In the following subsections, I review some notions of
potential games.

2.1 Ordinal Potential Games

Γ is called an ordinal potential game if it admits an ordinal potential. A function
P : Y → R is an ordinal potential for Γ if for every i ∈ N and for every
y−i ∈ Y−i:

ui(y−i, x)− ui(y−i, z) > 0 iff P (y−i, x)− P (y−i, z) > 0 ∀x, z ∈ Yi. (1)

On other words, if player i obtains a better (worse) payoff by unilaterally deviat-
ing from a strategy to another one, the potential function increases (decreases)
with this deviation as well. For everywhere differentiable payoff functions and
continuous action space, an equivalent condition for a game to be an ordinal
potential is the existence of an ordinal potential function P which satisfies:

∂ui(y)
∂yi

> 0 iff
∂P (y)
∂yi

> 0, ∀i ∈ N, y ∈ Y. (2)

2.2 Weighted Potential Games

Let w = (w1, · · ·, wn) be a vector of positive numbers which is called weights.
A function P : Y → R is a weighted potential for Γ if for every i ∈ N and for
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every y−i ∈ Y−i

ui(y−i, x)− ui(y−i, z) = wi (P (y−i, x)− P (y−i, z)) , ∀x, z ∈ Yi. (3)

Γ is called a weighted potential game or simply w-potential if it admits a
weighted potential. It can be easily verified that for everywhere differentiable
payoff functions and continuous action space, an equivalent condition for a game
to be weighted potential is the existence of a weighted potential function P which
satisfies:

∂ui(y)
∂yi

= wi

(
∂P (y)
∂yi

)
, ∀i ∈ N, y ∈ Y. (4)

2.3 Exact Potential Games

A function P : Y → R is an exact potential for Γ if it is a weighted potential for
Γ with wi = 1, ∀i ∈ N . Γ is called an exact potential game if it admits an exact
potential. In other words, a normal form game is called exact potential game if
there exists a potential function which reflects the change in the utility accrued
by every unilaterally deviating player. For example, Prisoner’s Dilemma game
G is an exact potential game with potential as follows:

G =
(

(3, 3) (0, 4)
(4, 0) (1, 1)

)
, P =

(
0 1
1 2

)
.

2.4 Pseudo-Potential Games

Game Γ = 〈N,Y, u〉 is a pseudo-potential game if there exists a pseudo-potential
function P : S → R such that for all i ∈ N and all y−i ∈ Y−i:

arg max
yi∈Yi

ui(yi, y−i) ⊇ arg max
yi∈Yi

P (yi, y−i). (5)

In other words, each player’s best reply in the game Γ? = 〈N,A, P 〉 is
included in that of Γ. If the set of best replies of gems Γ and Γ? are identical,
then game Γ is called a best-response potential game [2]. If P is strictly concave,
then every pseudo-potential game is a best-response potential game. I study the
pseudo-potential games, because a main class of games used in wireless networks
is the game of weak strategic substitutes (WSTS) or complements (WSTC) with
aggregation which is a pseudo-potential game. For more information about
pseudo-potential games please refer to [4].

Game Γ = 〈N,A, u〉 is a game of strategic substitutes (STS) (comple-
ments(STC)) if the best response reaction of each player for the case that the
other players turn more aggressive is to become less aggressive (more aggressive).
A boarder view of STS/C games are games of weak strategic substitutes (WSTS)
or complements (WSTC). WSTS/C are games in which there exists a selection
from the best response correspondence of each player, which is nonincreasing
(for WSTS), or nondecreasing (for WSTC). A more restricted class of these
games is WSTS/C games with aggregation. In these games, the payoff of each
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player only depends upon his action and an aggregate of other players’ actions.
The simplest aggregation is additive aggregation defined as ȳ−i =

∑
j∈N\{i} yj .

In other words, ui only depends on yi and the summation of other players’ ac-
tions. Consequently, the set of best replies of player i for any choice of y−i ∈ Y−i

depends on ȳ−i which is denoted as BR(ȳ−i).
Formally, game Γ? = 〈N, A, P 〉 is a game of WSTS with aggregation if for

every player i, there exists a function bi : Ȳ−i → Yi such that (i) bi(ȳ−i) ∈
BR(ȳ−i) ∈ Ȳ−i, ∀ȳ−i and (ii) bi(ȳ−i) ≤ bi(x̄−i) whenever ȳ−i > x̄−i. A game
of WSTC with aggregation is defined exactly as above, except for replacing
ȳ−i < x̄−i in (ii).

2.5 Relations Between Different Classes of Potential Games

The following equation relates different classes of potential games:

Exact potential ⊂ Weighted potential ⊂ Ordinal potential
Ordinal potential ⊂ Best-response potential ⊂ Pseudo-potential.

There are some more notions of potential games such as: generalized ordi-
nal potential games, generalized ε-potential games, and quasi-potential games.
However, they are not inside the scope of this research.

3 Properties of Potential Games

In this section, I will summarize some special properties of ordinal and pseudo
potential games. Note that weighted potential and exact potential games are
subsets of ordinal potential games. An ordinal potential game has all properties
of pseudo-potential games. However, the properties of pseudo-potential games
are more restricted. A normal form game is a finite game if the number of players
is finite and each of them has a finite strategy space. The most interesting
properties of potential games can be categorized in two parts: existence of Nash
equilibrium and convergence of the learning process to the Nash equilibrium. In
the following subsections, I discuss more about these properties separately.

3.1 Existence of Nash equilibrium

The following two remarks characterize the existence of Nash equilibrium in
finite potential games.

Remark 1. If P is the potential function of ordinal potential game Γ =
〈N, Y, {ui}i∈N 〉, then the equilibrium set of Γ coincides with the equilibrium set
of coordination game Γ? = 〈N,Y, {P}i∈N 〉 [1].

Remark 2. Every finite ordinal potential game possesses a pure strategy
Nash equilibrium [1].

Consequently, every y? ∈ Y that maximizes P (y) is a pure strategy equilib-
rium of Γ. However, the converse is not in general true. There might be pure or
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mixed strategy Nash equilibria that are just local maximum points of P . But,
in addition, if the strategy space is convex and P is continuously differentiable
on the strategy space, then every Nash equilibrium of Γ is a stationary point
of P . If P is concave, then every Nash equilibrium of Γ is a maximum point of
P . Such a Nash equilibrium is unique if P is strictly concave. An important
conclusion of Remark 1 is that: potential games can be studied using two differ-
ent approaches: 1) the classical framework of game theory applied to game Γ;
and 2) the framework of standard optimization theory applied to the potential
function. For infinite ordinal potential games, the Nash equilibrium exists under
some restrictions:

Remark 3. Every ordinal potential game possesses an ε-equilibrium 2 [1].

Remark 4. Every pseudo potential game with compact strategy set and
continuous potential function possesses a pure-strategy Nash equilibrium [4].

Note that the existence of a continuous payoff function does not guarantee
the existence of continuous potential function [5]. In exact and weighted poten-
tial games, however, potential function is continuous if and only if the utility
functions are continuous. For infinite potential games, the Nash equilibrium
exists under more restricted conditions. However, these restrictions are not too
tight. Interestingly, in practice, a large family of potential functions are contin-
uous and the strategy space is compact. Note that all the relations described
earlier among Nash equilibria and potential function still hold for infinite poten-
tial games. I refer interested readers to [5] for more details about Nash equilibria
in infinite potential games.

3.2 Convergence to Nash equilibrium

A path in action set Y is a sequence γ = (y0, y1, · · ·) such that yk = (yk−1
−i , x)

for some x ∈ Yi. In other words, in each step k, only one player is allowed to
deviate. y0 is the initial point of the path. Player i is called the deviator in
step k. γ is an improvement path with respect to Γ if ui(yk) > ui(yk−1) for all
k ≥ 1. Γ has the finite improvement property (FIP) if every improvement path
is finite.

Remark 5. Every finite ordinal potential game has the FIP [1].

It is obvious that every finite improvement path of the ordinal potential
games must terminate in an equilibrium point. That is, the sequence of one-
sided better replies converges to the equilibrium independent of the initial point.
Note that the order at which players deviate to a better or best response can
be deterministic or random and need not to be synchronized. It is the most
interesting property of the potential games especially in order to distributively
find the equilibrium of the self-organizing systems. Note that every finite game
with the FIP is not an ordinal potential game. However, in [1], it is proved
that every finite game has the FIP iff it has generalized ordinal potential. I

2A strategy y? is ε-equilibrium of game Γ if no player can gain more than ε by unilaterally
deviating from this strategy.
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refer interested readers to [1] for more information about generalized potential
games.

All the improvement paths in an infinite potential game may not be finite.
Note that improvement paths are constructed based on better response not best
response. However, there is no best-response cycle in infinite pseudo potential
games [4]. Since ordinal potential games are subset of pseudo potential games,
finite and infinite ordinal potential games have no best-response cycle. For
ordinal potential games, Voorneveld et al. proved that there is no even better
response (improvement) cycle [6].

A path γ = (y0, y1, ...) is an ε-improvement path with respect to Γ if for all
k ≥ 1, ui(yk) > ui(yk−1) + ε, where i is the unique deviator at step k. The
game Γ has the approximate finite improvement property (AFIP) if for every
ε > 0, every ε-improvement path is finite.

Remark 6. Every ordinal potential game with bounded payoff functions has
the AFIP [1].

The stability property of NE for pseudo potential games is summarized in
the following remarks:

Remark 7. For finite pseudo-potential games, the sequential best replies
converges to an NE [3].

Remark 8. For infinite pseudo-potential games with convex strategy space
and single-valued best reply 3, the sequence of simultaneous best replies con-
verges to an NE of the game [3].

On other words, If players start with an arbitrary strategy profile and si-
multaneously deviates to their unique best replies in each period, the process
terminates in an NE after finitely steps. To remove the conditions restricting
general existence of NE and convergence of learning process to NE, one may
quantize the action space and construct a discrete action space. In several
applications, utilizing the quantization technique converts an infinite potential
games to a finite potential games.

Ordinal and pseudo potential games have several other interesting properties
which can be found in [1], [6], and [4].

4 Potential Games in Wireless Networks

The problem of noncooperative resource allocation in wireless cellular, ad hoc,
and cognitive radio networks can be studied as a potential game. Existence of
potential function enables us to obtain a fully distributed algorithm for resource
allocation problem. In the next subsections, two examples are presented showing
the application of pseudo and ordinal potential games in wireless networks.
I tried to choose simple examples and explain in simple language to prevent

3Games with strictly multi-concave potential (Concave in each players’ unilateral deviation)
have single-valued best reply
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discussion about networking concepts. However, more complicated example
can be found in the literature.

4.1 Power Control in Cellular Networks [7, 8]

Consider a power-controlled cellular system 4. In the system, every user is
associated with a base station. I consider only downlink transmissions, because
the uplink case can be treated similarly. Assume that there are m network
nodes. Let pt

i denote the transmission power at the downlink of node i. Let
gij denote the gain from the home base station of user j to user i. Then, the
interference power received at user i from the downlink of user j is pr

ij = gijpj .
Let ηi be the background noise received at node i. The quality of service of
node i is measured in terms of its signal to noise and interference ratio (SINR):

αi =
giip

t
i∑

j 6=i gijpt
j + ηi

=
pr

ii∑
j 6=i pr

ij + ηi
(6)

Note that this model is general enough to represent CDMA 5 systems with
matched-filter receivers or TDMA 6/FDMA 7 systems. The problem of deter-
mining the transmission powers can be considered as a noncooperative game.
The set of players is the set of network nodes, M = 1, ..., m. The action space of
each player can be discrete or continuous. The utility of each player depends on
the level of transmission power and SINR. On other words, the payoff function
of node i can be written as: ui(αi, p

t
i). Let Ii denote the interference of other

transmissions at node i:

Ii =
∑

j 6=i

gijp
t
j =

∑

j 6=i

pr
ij . (7)

Since SINR of node i depends on pt
i and Ii, the payoff of player i only depends

on pt
i and Ii. A quasilinear form of the utility function is ui(αi, p

t
i) = Ri(αi)−cpt

i,
where c is the price constant. A common form of function Ri is sigmoid function
or log(1 + αi). If function Ri is monotonic, it can be verified that this game
is a game of weak strategic complements/substitues with aggregation Ii. If
p = 0 and utility function is increasing in terms of SINR, then the game is
strategic complements and the best-replay is to always set the the power to the
maximum allowable level. The role of p is to transform the game from strategic
complements to strategic substitutes to avoid excessive congestion. In general,
if function R is concave, then the game is of strategic substitutes whenever:

cIi ≥ −∂2R

∂pt
i

αi, i = 1, ...m. (8)

4The extension of this method for ad hoc network is straight forward.
5Code Division Multiple Access systems
6Time Division Multiple Access systems
7Frequency Division Multiple Access systems
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If the problem is expressed in terms of received powers, then the aggregator
would be additive (equation (7)). From the convergence of the best-response
process, the Nash equilibrium of this game can be reached with finite number
of steps.

4.2 Power Control in Cognitive Radio Networks [9, 10]

Consider a single cell network of wireless cognitive radios adjusting their trans-
mit powers in an attempt to achieve a target SINR at a common base station.
In general, this can be modeled as a myopic repeated game as follows. The set
of power adapting cognitive radios, N , forms the player set. Each players action
set, Ai, is defined as convex set Ai = [0, amax]. Each radios utility function is
expressed as follows:

ui(A) = −
∣∣∣∣∣∣
γ̂ − giai

1
K

{∑
j 6=i gjaj + η

}
∣∣∣∣∣∣

(9)

where ai is the transmission power of radio i, gi is the link gain from node i to
base station, η is the power of noise at base station, K is the spreading gain,
and γ̂ is the target SINR. In [9], it is proved that game γ = 〈N,P, {ui}i∈N 〉 is
an ordinal potential game with potential function as follows:

P (A) = 2γ̂/K

(∑

i

∑

k>i

gigkpipj

)
+

∑

i

(−g2
i p2

i + 2γ̂ηgipi/K
)
. (10)

This game is an ordinal potential game with convex strategy space and con-
tinuous potential function. Hence, the sequence of unilaterally best-responses
of each player converges to the NE. This approach enables a distributed imple-
mentation of the power allocation problem for the cognitive radio networks.

5 Conclusion

In this paper, I reviewed the concept of potential games. Each potential game
admits a potential function which is the key idea of potential games. Potential
function reflects the behavior of payoff functions. Various notions of potential
games were studied in this paper. It was showed how potential functions can
represent the payoff function behavior of potential games. Existence of NE
and convergence of the learning process to the NE were studied as two main
properties of potential games. With two examples, I described how potential
games can be used to address the power allocation problem in wireless networks.
There exist several other examples demonstrating the way that potential games
can be used for resource allocation in wireless networks.
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