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Abstract

The cost of reproducing a digital good is upper bounded by some low
cost, providing the seller with an unlimited supply of items for sale. In
such cases, or even in cases that the supply is limited but at least as many
as the number of bidders, the agents have no motivation to compete with
each other. This lack of competition decreases the total revenue of the
seller, making traditional auctions to fail to collect optimal revenue under
such circumstances. This paper surveys a class of auctions specifically
designed for such conditions. The goal of these auctions is to limit the
number of sold items in a manner that once again, the best strategy for
each is to bid the amount he truly values the good, and not any value
lower than that. The auctions have been tuned to maximize the seller’s
revenue, the money he collects from the agents.

1 Introduction

There are n agents interested in buying a specific item, where each agent i has
a private valuation for the item, ui, which is the maximum price he is willing
to pay for it. However, the utility each agent gains from the auction is the
difference between the valuation he has and the price he pays for the item. The
auctioneer decides the price of the item based on the values bi, the agent’s bids.
It can clearly be inferred that agents have no motivation to bid truthfully, i.e.
declare their valuation as their bid, unless the rules of the auction are set in way
that agents gain the most by bidding truthfully, or at least can’t do better by
not bidding truthfully. Such auctions are said to be dominant strategy truthful
or simply truthful. The Vickrey-Clarke-Groves (VCG) mechanism is an instance
of a truthful mechanism and has been used for selling items in auctions.

For most of the text, the auctions of interest are single round sealed bid
multiple unit single demand auctions, unless stated otherwise. The auctioneer
(or seller) is willing to sell k identical items to n agents, where each agent
declares his bid only to the seller and is interested in possessing at most 1 item.
The seller decides which agents are assigned an item and at what prices, with
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the intention to maximize his own revenue which is the sum of the payments
of all the agents. The agents that are not assigned an item pay nothing. It is
important to note that everyone is aware of the rules of the auction in advance.

In normal auction settings, the number of items is less than the number of
agents and, hence, VCG charges the first k highest bidders a price equal the
the k+1 -st highest bid. However, in the case where the seller is selling digital
goods like mp3 downloads or pay per view movies, i.e. goods that have a small
marginal cost of reproduction, or in the general case the number of items is more
than the agents, this question arises that at what price should the items be sold
to achieve an optimal revenue for the seller? Unlike the case where the supply
was limited and agents had to compete for the goods, lack of competition for
these types of goods prevents the agents from having any incentive to bid high
values.

In such cases, VCG would assign an item to every agent at zero cost which
is the worst possible outcome for the seller. For long, market analysis has been
widely used to accommodate the price of the goods with the demand of the
market, mainly referred to as fixed pricing. If perfect knowledge of consumer
valuations were available, fixed pricing would yield optimum revenue. Unfortu-
nately such information is not always available and the optimality of fixed pric-
ing depends heavily on the accuracy of the underlying market analysis. Also,
such analysis needs frequent updating to be able to adopt to changes in the
market, whereas auctions have such property in nature.

This paper surveys various methods used to perform pricing of digital goods
from the seller’s perspective, which intends to maximize his own revenue. The
assumptions and notations used throughout the text are discussed in Section 2.
Section 3 covers the basic random auctions that use sampling to yield optimum
revenue. The problem with these auctions is that some agents may wish they
were in the place of others. Auctions that try to eliminate such feeling from
the agents are discussed in Section 4. A new class of auctions are presented
in Section 5 that allow the sale of some goods, such as electronic books, to be
continuous over time and not end as soon as the auction is over. A technique that
can be used to transform any random auction for digital goods to a deterministic
auction is briefly explained in Section 6, and Section 7 concludes the survey.

2 Preliminaries

In the rest of the text we assume, without loss of generality, bids are ordered
in ascending order (bi ≤ bi+1). The bid values may be divided by the smallest
amount, and thus, be in the range [1,h]. R is the sum of all sale prices. Also,
there is no collusion amongst the agents: none of the agents form a group to
gain by changing their bidding strategies.

Given a set of bids B, selling as many items as possible is not an optimal
solution. Also, it might seem tempting for the seller to maximize his revenue
by selling k items at price bn−k in a sense that:

k = argmax1≤k<n k × bn−k (1)
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This is equivalent to using VCG to sell k items at the price of the k + 1-st
highest bid, where the number of items has been optimized to obtain maximum
revenue. Although VCG is truthful, such usage of it is not truthful because the
price each agent i pays depends on his own bid bi.

The concept of bid independence introduced in [6] has been widely used.
The basic idea is that in order for an auction to be truthful, it should be bid
independent, i.e. when computing the price bidder i has to pay, his bid value
bi should not be used. It is also shown that any bid independent auction is
truthful and vice versa.

Let F be the revenue for optimal fixed pricing. In other words, F is the
revenue due to the optimal non-truthful single-price auction. F is used as a
benchmark for evaluating the optimality of the revenue obtained from a specific
auction. An auction is said to be β-competitive against F, if for all bids B the
expected profit A(B) satisfies:

E[A(B)] ≥ F (B)
β

(2)

3 Random Sampling Auctions

A deterministic auction assigns one specific outcome to a set of given bids and
collects a known amount of revenue. On the other hand, a random auction gives
a distribution over possible outcomes and the revenue is a random variable. For
such auctions, the expected revenue is considered. As will be explained in
section 6, deterministic auctions provide lower worst case revenue compared to
random auctions, so most of the auctions presented in the context of digital
good’s pricing are random auctions.

3.1 Single Good Auction

Using a subset of a set to estimate certain features of the whole set is used in
many fields of science. The idea here would be to use a subset of the agent’s
bids as data for market analysis to find an optimal price. The accuracy of the
estimate depends directly on the size of the subset: the greater the subset is,
the more accurate the analysis becomes. Under certain conditions, as we will
see next, accuracy and revenue form a tradeoff between them. Maximizing one
minimizes the other.

So doing, the multiple price random sampling auction presented in [1] works
as follows:

1. Partition the agents in two groups S1 and S2.

2. Use Equation 1 to calculate the number of items k1 and optimum price,
popt1, for bids in S1 & k2 and popt2 for bids in S2.

3. For all agents in S2, assign to each agent an item if he has bid grater than
the optimum price, i.e. bi ≥ popt1.
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4. For all agents in S1, assign to each agent an item if he has bid grater than
the optimum price, i.e. bi ≥ popt2.

Normally S1 and S2 have the same size and agents are partitioned using a
random coin flip. The auction uses two different prices to assign goods to the
agents, an approach that is normally not acceptable for consumers. In cases
where such approach is not acceptable, in step 4, all agents in S1 are rejected
and are assigned nothing, decreasing the expected revenue by 50%.

As it can be seen, since the price each agent pays does not depend on the bid
he made, this auction is truthful. As for the revenue, unfortunately it appears
it is upper bounded by being at most 4-competitive [1].

3.2 Multiple Good Auction

An extension to the case of the pay per view pricing of a movie would be the
pricing of pay per view of a movie in a bundle of movies. Consider the case that
passengers on a plane have the chance to choose an in-flight movie from a bundle
of m movies. The problem is restricted to preferring at most one movie (assume
the length of the flight is short). Currently, all movies are priced equally at a
fixed price by the airlines. However, having each passenger declare a different
price for a ticket based on his valuation for the available in-flight movies seems
somewhat interesting.

The auction presented in [2] for this problem setting is identical to what was
presented in the previous subsection, supporting both the single price and the
dual price auctions. The difference, however, is the way the optimum prices are
calculated. The latter appears to be more sophisticated. Let bij represent the
bid agent 1 ≤ i ≤ n places for item 1 ≤ j ≤ m. Without loss of generality, we
can assume item m is a dummy item valued 0 by every agent. This allows agent
i being assigned item m be interpreted as agent i not being assigned anything.
Additionally, ri represents the optimal price for item i, xij indicates agent i be-
ing assigned item j and, finally, pi is the profit of agent i, the difference between
the utility he has and the price he is charged. The seller’s goal is to select ri’s
in a way that maximizes the revenue,

∑
j

∑
i xij .rj . Not delving too much into

details, the following optimization problem provides enough information about
how the optimal price is calculated [2]:

max
∑

j

∑
i xij .rj subject to

rm = 0∑
i xij ≤ 1 1 ≤ i ≤ n
xij ≥ 0 1 ≤ i ≤ n, 1 ≤ j ≤ m

pi + rj ≥ bij 1 ≤ i ≤ n, 1 ≤ j ≤ m∑
i pi =

∑
j

∑
i xij .(bij − rj) 1

(3)

Walking through the listing line by line, the program maximizes the revenue
(line 1) constrained by item m being priced 0 (line 2), each agent being assigned
at most one item and at least none (lines 3 & 4) and each agent being assigned
an item only if he bids higher than the price of that item (lines 5 & 6).
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A careful reader might notice there are no restrictions on xij being integers
(more accurately xij ∈ {0, 1}). It follows that for any fractional solution of
Equation 3, there exists a solution with xij ∈ {0, 1}. For more details see [2].
From a performance perspective, the most expensive function used for the single
item goods was sorting the bids. As for the multiple unit case, an optimization
problem has to be solved which has a quadratic objective function. Performance
here is definitely an issue. As for the revenue, this method is 24-competitive [2].

4 Envy-free Auctions

Consider the dual price auction presented in section 3.1. The agents in the
subset paying the higher price some how wish they had been in the other subset.
In other words, some agents envy others. Even in the single price auction, some
agents are rejected an item even though their bid might have been higher than
the price decided by the seller (the agents in the rejected subset). These agents
all get utility of zero, whereas they could have obtained positive utility if they
had been assigned a good.

An auction is said to be envy-free if after the auction is run, no bidder would
be happier with the outcome of another agent. For digital goods, this means
all the agents pay the same price, and a good is assigned to all agents that bid
higher than this value. As important such property of an auction may seem,
unfortunately, part of the work done in [4] is dedicated to showing that no
auction can be truthful, constant-competitive and envy-free at the same time.

Fortunately, that’s not all. The restrictions of being truthful or envy-free
may be relaxed to achieve good results. In [4] two different auctions are pre-
sented: one which is truthful with high probability and envy-free, another which
is envy-free with high probability and truthful.

An auction is truthful with probability 1−ε if the probability that any bidder
can benefit from an untruthful bid is at most ε. An auction is truthful with high
probability if ε → 0 as m →∞, where m is the number of winners in the auction.

The methods described in [4] are more sophisticated to be able to cover
in a short discussion, but they both extend the Consensus Revenue Estimate
(CORE) class of auctions. To give a glance of how they’re implemented, we
start by defining the profit extractor. The profit extractor is a truthful envy-
free auction that extracts exactly a given total revenue C, if possible. It simply
finds the largest possible k such that the highest k bidders can equally share the
cost C and pay C/k each. Let f be the function that maps bid values to prices
for all agents. Since the profit extractor is truthful, from agent i ’s point of view,
it can be viewed as a function f(b−i) = csC(b−i). Now, for any function r, if we
have r(b−i) equals to some constant c for all i, i.e r is a consensus, the auction
defined by f(b−i) = csr(b−i)(b−i) is a profit extractor extracting a total revenue
of exactly c and, hence, truthful and envy-free. The rest of the definition of the
promised auctions revolve around selecting the functions r.

It appears that if c is chosen within a constant factor ρ of the optimum fixed
price F, there exist families of r functions, most of which are a consensus. So if
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an r is picked randomly, the resulting auction is envy-free with high probability,
1− logc ρ to be precise. In terms of the number of agents winning the auction,
m, the probability of this auction being envy-free is 1− logc

m
m−1 = 1−Θ(1/m)

[4]. So this auction is truthful and constant-competitive and also envy-free with
high probability.

For each function r found in the previous auction, there seems to be another
function r′ where the resulting auction is truthful with the same probability,
1−Θ(1/m). Hence, this new auction is constant-competitive and envy-free plus
truthful with high probability [4]. In the tv broadcast mass market, where m is
intended to be high, this high probability seems to be very satisfactory.

5 Online Auctions

Single round auctions have a natural time requirement for the bids: all bids
should be submitted by a certain deadline, after which the seller starts calcu-
lating the outcome of the auction and rejects all incoming bids. While this time
requirement may not be an issue for an auction with a small number of items to
sell, digital goods aim at a huge market which is, of course, hard to coordinate
in terms of having every agent bind his participation in the auction to a specific
time slot. Moreover, most consumers require a prompt answer to their bids of
getting or not getting the good. All this put aside, most digital goods such as
mp3s and electronic books are sold continuously, not just once. If a single round
auction be used to sell such goods, it is very likely that most consumers will
not manage to bid at the right time, some won’t want to bid because they will
have to wait for a long time to get an answer and the seller rejects the revenue
he could have gained from agents bidding in the future.

Online auctions have been designed to accommodate such situations. The
seller keeps the auction running, and as each agent places his bid, the seller
responds to his bid very quickly, but not necessarily immediately, by calculating
a price without waiting for the other agents who will place their bids afterwards.
Due to the fact that decisions are made one by one, using sampling techniques
might not seem convenient.

An online auction may be viewed as a collection of n pricing functions
s1, ..., sn, where each si is a function of the bids made up to the point agent i
make his bids. In other words, si = si(b1, ..., bi−1). The same proposition about
truthfulness applies to online auctions as it did to single round auctions: an
online auction is truthful if and only if it is bid independent [5].

A simple online auction would be for the seller to set for each agent i, si = 2k

where k ∈ {0, ..., blog hc} is chosen at random and h is the ratio of the highest
and the lowest bids, assuming it is known in advance. Since the price each
agent pays is independent of his bid, this auction is truthful. In cases where h
is not known in advance, the auction can start by assuming h = 1 and update
its value at each step when a new bid comes in. Surprisingly, this auction is
Θ(log h)-competitive in both cases that h is either known in advance or not.
However, it feels to be more offline than online.
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An online auction could be created using buckets. Given a sequence of bids,
they are divided into l = blog hc+ 1 intervals I0, ..., Il−1, where Ik = [2k, 2k+1)
and is assigned to bucket Bk. The weight of the k-th bucket, wk, is the sum of
the bids inside it: wk =

∑
i∈Bi

i. The seller selects a bucket at random from the
buckets, with the probability of a bucket being selected being proportional to
its weight, and charges that agent the lowest possible bid of the bucket. More
formally, let d ≤ be some tuning parameter. The price agent i is charged, si,
has the following probability distribution over k:

Pr[si = 2k] = (
wk∑l−1

r=0 wr

)d (4)

Notice that when agent i places his bid, the buckets contain the bids b1, ..., bi−1.
The bid independence of the auction is visible, confirming that the auction is
truthful. The analysis available in [5] proves this auction is O(3d(log h)1/(d+1))-
competative relative to the optimal fixed price revenue.

Although the auction may perform weakly at the beginning, eventually, the
price becomes closer to the optimal price. Since the decisions in the auction
are made at separate times, envy of different agents doesn’t make much sense.
Only in the case that two different agents place their bids almost simultaneously
could envy become an issue. Having the auction make decisions after specific
time intervals (and not instantaneously) could solve this problem.

One last issue of online auctions would be the freedom each agent has to
place more than one bid. While he cannot gain by bidding untruthfully in each
bid, he can gain if he floods the auction with low bids until he is assigned an
item. This doesn’t contradict the no collusion assumption we made previously,
because no other agent is assisting this malicious agent by changing his strategy.
Designing an auction that prevents such behavior may be an interesting research
topic.

6 De-randomization of Auctions

It might be noticed all the auctions presented so far were random auctions. This
is in fact due to the analysis done in [1], which proves no deterministic auction
can be competitive. This being true, interestingly, [3] presents a general tech-
nique for turning any random auction into a deterministic auction which collects
approximately the same total revenue. This technique does not contradict the
analysis mentioned previously, since the new deterministic auction is asymmet-
ric, i.e the outcome of the auction depends on the order the bids are placed. In
other words, different permutations of the same bids have different outcomes.
The technique uses an analogy between bid independent auctions and the hat
problem.

The hat problem, initially studied in coding theory, is a setting where there
are a total of n hats and each hat could be any of the k possible colors. Each
hat is placed on the head of one agent, and agents get to observe the color
of other agent’s hats, but not their own. The problem is to devise a strategy
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to maximize the number of agents that are able to guess their own hat color
correctly.

The basic solution to come in mind is for each agent to guess his own hat color
randomly from the set of k possible colors. In the uniform case, the expected
number of correct guesses would be 1/k, but this is a random strategy. The de-
randomization technique constructs a directed graph based on the observation
each agent has of other agent’s hat colors and proposes a strategy for each agent
to declare his hat color based on the maximum flow of the graph. This strategy
has an expected success rate of 1/k, equal to that of the random strategy, but
is deterministic.

How is the hat problem related to an auction? The seller must calculate the
price each agent pays based on the bids other agents make, b−i. If the price
calculated by the seller is less than what agent i has bid, he is assigned an item.
So the price an agent pays can be interpreted as his hat color, and the hat color
of the rest of the agents are the bids they made. Agent i correctly guessing his
hat color is thus equivalent to the seller placing a price for agent i less than his
bid.

The expected revenue of the resulting deterministic auction is closely related
to the expected revenue of the original random auction. If the expected revenue
of a random auction is E[A(b)], then the expected revenue of the deterministic
auction constructed from it using this technique is at least E[A(b)]/4−2h, where
h is the ratio of the highest and lowest bids [3].

As much as the bound on the revenue may seem appealing, the computa-
tional complexity is not. The technique has to solve an exponential size flow
problem. For the case k = 2, the paper provides a polynomial time algorithm
for finding the flow. Existence of such algorithms for cases where k ≥ 3 is left
as an open problem.

7 Conclusions

This paper surveyed auctions used for pricing digital goods which were designed
in a manner to be truthful and optimize the total revenue of the seller. Although
it may be proven that none of these auctions can collect a revenue equal to that
of an optimal non-truthful auction, some analysis shows these auctions provide
a revenue that is some factor smaller than optimum, even in the worst case.

Nearly all the auctions presented were random, giving a distribution over
outcomes and a revenue which is a random variable. As discussed earlier, some
auctions require very complex computations to calculate the price each agent
has to pay. These complexities can have great impact on applicability of the
auction.

The auctions presented here are not just used for unlimited supply. In cases
where the number of items k is less than the number of agents n, these auctions
can be used if the seller simply rejects the n− k lowest bidders.
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