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ABSTRACT
In this paper, we examine techniques by which a commu-
nity of autonomous agents can reach global agreement upon
the use of social conventions in coordination and cooperation
games. The merits of examining such convention acquisition
is twofold: it can help us learn more about how humans
behave in social systems, and it can explain how agents
should behave in artificial social systems. We notice that
one of the most established convention acquisition strate-
gies seems to rely on some tenuous assumptions and does
not represent human behaviour very well. Therefore, we in-
vent new, community-centred convention acquisition strate-
gies. A new environment that takes location into account is
defined and these new strategies are examined against other
well-established strategies in terms of convergence, stabil-
ity and social welfare generation. The new strategies are
concluded to be optimal in our environment and give rise
to interesting human-like behaviours. Suggestions for mak-
ing the simulation environment more realistic are given and
future work is suggested.

1. INTRODUCTION
Agent-based simulations model a population undergoing

frequent interactions with one another where we explicitly
model the individual agents rather than gross statistics for
the entire population[6]. Two particularly interesting types
of interactions are coordination and cooperation. In these
types of interactions, agents must agree on an action to re-
ceive the optimal amount of utility.

To ensure that agents cooperate or coordinate, they tend
to follow social conventions which represent a behavioural
constraint that strikes a balance between individual freedom
and the goal of the agent’s society. Conventions can come
to exist within society in two different ways:

Designed: Laws are hardwired into agents by a designer.

Emergent: Conventions emerge organically through agents
capable of learning and updating their strategy.

In this paper, we are concerned with emergent conven-
tions, as they are the more interesting case that tends to
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have some practical explanatory power with regard to hu-
man behaviour.

Agents learn conventions through strategy update func-
tions employed by the agents. For these agent-based simu-
lations, two constraints are generally applied to the strategy
update function[7]:

Semi-Locality: The strategy update function must be based
on the particular agent’s experiences, including only
the actions taken, the actions taken by opponents, and
the payoffs received. A stronger constraint called lo-
cality abandons the ability to refer to the actions of
opponents.

Anonymity: The strategy update function cannot be based
on the identities of individual agents or the names of
the actions

We abandon semi-locality for some strategy update func-
tions to allow for costless communications between agents.
This seems plausible in human society since we are so well
connected and can communicate over short distances with
no cost other than a very short time span. Also, some well-
established strategy update functions rely on cheap commu-
nication between agents[3]. However, some strategy update
functions will maintain the above constraints.

In [7], Shoham and Tennenholtz define a rational social
convention:

Rational Social Convention: Let g be a game, V (g) a
variable defining either the maxmin value, the set of
values of the various Nash equilibria, or the set of val-
ues of the Pareto-optimal outcomes attainable in game
g, and < an ordering on the possible values of this vari-
able1. A social convention sl is rational with respect
to g and V if V (g) < V (gsl).

Shoham and Tennenholtz also propose a simple, self-interested
strategy update function, called Highest Cumulative Reward
(HCR), which they claim converges on a convention that
guarantees to the agent a payoff which is no less than the
maxmin value of the game in coordination and cooperation
games. This convention is not necessarily a Nash equilib-
rium, and in the case of the Prisoner’s Dilemma, it is the ra-
tional convention with respect to maxmin where both agents
cooperate.

There are a few assumptions that are made to guarantee
this convergence to a certain probability that seem rather
1If the game variable refers to a set of elements we take <
to be an ordering over sets. With maxmin, it is straightfor-
ward.



tenuous. First of all, in their proof, they rely on pairs of
agents with the same strategy playing together until other
pairs of agents forget their past. What if agents don’t ever
forget their past? Secondly, they abandon doing empiri-
cal simulations on The Prisoner’s Dilemma since it ends up
being very inefficient at converging to a rational convention
and therefore does not react the way that they predict (they
admit as much). This fact is very unsatisfying and does not
make a very good case for their claim. HCR should be eval-
uated transparently. Finally, they assume that the memory
size is greater than the number of agents. This is not neces-
sarily realistic, as we might want to have more agents than
iterations in a simulation. Naturally, we want to exploit
parallelism in our environment.

In addition to testing HCR in my own simulation envi-
ronment, we would like to test new strategy update func-
tions that are community-centred. In human society, people
are generally concerned with the welfare of others, as well
as themselves. They are not strictly self-interested utility
maximizers. If HCR fails for some reason, then it would be
good to have a strategy update function that emulates hu-
man behaviour and also converges to a rational convention
that is equitable and social welfare maximizing.2

In [2], Richard Dawkins asserts that one of the main ideas
of the theory of evolution is the fact that genes that are
selfish, not individuals. He states that there are circum-
stances in which genes assure their own selfish survival by
influencing individuals to behave altruistically. For instance,
reciprocal altruism is an obvious example when there is an
asymmetry in need: both agents benefit from a reciprocally
altruistic interaction. This kind of ‘you scratch my back, I’ll
scratch yours’ mentality would lead agents to cooperate in
the Prisoner’s Dilemma.

In [4], biologist Marc Hauser describes a study where peo-
ple are given challenging moral conundrums and they must
decide on the most moral course of action. Despite differ-
ences in cultural or religious background, there was over-
whelming agreement on the most moral outcome. This lends
evidence to the fact that there is a moral sense built into our
brains. The outcomes chosen were equitable and utilitarian
in nature. People also chose an equitable Pareto-optimal
outcome whenever possible. This suggests that the most
desirable emergent convention is one that is utilitarian, but
also equitable and Pareto-optimal, if possible.

These two examples of human behaviour suggest two types
of community-centred strategy update functions: one that
is altruistic, and one that is utilitarian.

In addition to testing HCR, we would like to compare
the performance of the newly proposed, community-centred
strategies against other well-established strategy update func-
tions in terms of convergence, stability and social welfare
generation in order to make sure that our new update func-
tions are feasible replacements for more established ones.

We begin in Section 2 by definining a formal model of our
simulation environment including the various strategy up-
date functions and our evaluation methodology. In Section 3
we present the results obtained after extensive experimental
simulations of communities of agents employing the various
update functions. Next, in Section 4 we discuss these results
in terms of performance. After that, in Section 5 we discuss

2Note that since the games are symmetric, utilities are nor-
malized across agents and we do not have to worry about
unit conversion issues.

Figure 1: Example initial simulation environment.

interesting emergent behaviours that were noted while per-
forming simulations and relate them to behaviours exhibited
by humans. Finally, in Section 6 we conclude the paper and
provide directions for future work.

2. THE SIMULATION ENVIRONMENT
Our simulation environment is atypical from standard agent-

based simulation environments. Most simulations have a
population of agents, where subsets of agents are chosen
randomly to play games against each other[7][5]. However,
the simulation environment detailed in this section takes lo-
cation into account to model the effects of proximity. Agents
wander randomly around a finite environment, playing games
with proximal agents at each time-step. Agents are re-
stricted to pure strategies, but they are able to update their
strategies based on their interaction histories or communi-
cations from other agents. This section will define this en-
vironment formally.

2.1 Agents, Interactions, and Games
We begin assuming a set N = {1, ..., n} of agents. Agents

are initially assigned with a uniformly random distribution
to a location, li = (x, y), 0 ≤ x, y ≤ 100, x, y ∈ R in a
100x100 space. Initially, agents are also assigned to a pure
strategy si ∈ Ai where Ai is the set of possible pure strate-
gies for player i. The density of agents assigned to each
strategy is specified by the experimenter. An example ini-
tial environment can be seen in Figure 1. The experimenter
also declares the strategy update function for each agent,
which will be explained in detail in the following subsection.

Each simulation has a number of generations. At each
generation k = {1, ..., T}, an agent moves a random dis-
tance in both the x and y directions, where the direction is
chosen uniform randomly in the interval [−1, 1]. After move-
ment, the system uses the KD-Tree algorithm[1] to find each
agent’s approximate nearest neighbour. This neighbour is
the agent’s opponent for this generation’s subsequent game-
playing. If no other agent is found within a box of size 2
around an agent, then they do not play a game this gen-
eration. This no-op does not take any part in the strategy
selection process, therefore it is ignored by the model.



Each agent has a memory Mi, which is a finite series of
interactions. Each element in the agent’s memory is a triple
µki =

(
ski , σ

k
i , u

k
i

)
∈Mi, containing the player’s move ski , the

opponent’s move σki at time k against player i and the utility
uki gained from the outcome of the game. For the purposes
of these experiments, each agent’s memory size is set to the
number of generations in the simulation, |Mi| = 2T , thereby
giving them essentially infinite memory. Notice that the
agent’s memory meets the semi-local and anonymity con-
straints.

There are three different games that we examine in this
experiment, but the agents only play one type of game in
each simulation. The normal form of the games are shown
in the following tables, and they are named as follows: The
Prisoner’s Dilemma (cooperation game), The Coordination
Game, and The Coordination Game with Pareto Optimal
Outcome (for short, The Pareto Game).

C D
C -1,-1 -4,0
D 0,-4 -3,-3

(a) The Prisoner’s
Dilemma

C D
C 1,1 -1,-1
D -1,-1 1,1

(b) The Coordina-
tion Game

C D
C 2,2 -1,-1
D -1,-1 1,1

(c) The Pareto
Game

Table 1: Games associated with this simulation environ-
ment.

Here we list the conventions that are rational with respect
to the maxmin value that are desired in each game:

• In The Prisoner’s Dilemma, the only desired conven-
tion is the one where both agents select ‘C’, or coop-
erate.

• In The Coordination Game, there are two possible
desired conventions: where both agents select ‘C’ or
where both agents select ‘D’.

• In The Pareto Game, there is one desired convention
where both agents select ‘C’, since this outcome is also
a unique, equitable Pareto-optimal outcome.

2.2 Strategy Update Functions
The aim of this paper is to examine the effects of differ-

ent strategy update functions (SUF), and the interactions
between different update functions in terms of their effec-
tiveness in producing convergence, stability and high social
welfare. An SUF fi takes a memory state or a set of commu-
nications from other agents and, based on this information,
selects a pure strategy. The experimenter selects the strat-
egy update function for each group of agents at the begin-
ning of the simulation. The different strategy update func-
tions are described below, and they come in two flavours:
Self-interested and Community-centred.

In our simulation environment, the strategy is updated
when |Mi| > 0 and before an agent partakes in an interaction
with another agent at each generation.

2.2.1 Self-interested Strategies
When an agent has a self-interested strategy, they are only

concerned with their own utility. Agents act selfishly and
no concern is given to the community. The self-interested
strategies are as follows:

Stubborn: This is the very simplest form of update func-
tion: none. Agents with this SUF will keep the pure
strategy that was assigned to them for the duration of
the simulation.

Cheaptalk: With this SUF, the opponent sends a costless
message to the current agent indicating which action
they intend to take (only one agent communicates their
intentions). The agent then switches to the pure strat-
egy that maximizes their utility against the communi-
cated action[3].

Tit-for-tat: This strategy update function is only relevant
in the Prisoner’s Dilemma game. With this strategy,
the agent will begin cooperating. If any agent defects
against them, then they will defect in the next round
then go back to cooperating. Note that agents have
no identity. This means that the agent might not nec-
essarily defect against the same agent that defected
against them, which has implications that will be ex-
plained in later sections.

Highest Cumulative Reward (HCR): Proposed by Shoham
and Tennenholtz[7], This local SUF is defined algorith-
mically as follows[6]:

1. Initialize the cumulative reward for each action to
0.

2. Play according to current action and update its
cumulative reward.

3. Switch to a new action iff the total payoff ob-
tained from that action in the latest m iterations
is greater than the payoff obtained from the cur-
rently chosen action in the same time period.

4. Go to Step 2.

For our simulation, we set m to the number of games that
the agent has participated in at each generation, making
agents never forget their past. Formally, we can define this
as:

fi = argmax
si∈Ai

( ∑
k:sk

i =si

uki

)
, (ski , ·, uki ) ∈Mi (1)

2.2.2 Community-centred Strategies
Community-centred strategies are those where considera-

tion is given to other agents in the community. Agents might
try to emulate their peers, or they might act to increase the
utility of other agents the community, as well as themselves.
These strategies are defined as follows:

Simple External Majority: With this semi-local SUF, agents
will switch their strategy if so far they have observed
more instances of it in other agents than their present
strategy. Formally, it can be defined as: fi = mode(σki )[8].



Utilitarian: Here, the agent changes their strategy such
that the total utility gained by themselves and their
opponent is maximized over their entire memory, there-
fore this SUF is semi-local. The agent chooses the
action that maximizes the social welfare of the com-
munity formed by agents that he has interacted with.
This can be defined formally as:

fi = argmax
si∈Ai

( g∑
k=1

(
ui(si, σ

k
i ) + uo(si, σ

k
i )
))

(2)

where o is the opponent and g is the current genera-
tion.

Locally Altruistic: With this SUF, agents choose the strat-
egy that maximizes the utility of the agents surround-
ing them in a certain radius, given their current strat-
egy. This can be seen as a less local version of Cheaptalk,
where the agent has no regard for their own utility, but
rather the utility of their potential opponents. Defined
formally:

fi = argmax
si∈Ai

( ∑
j∈R(i,r)

uj(si, sj)

)
(3)

where R(i, r) is the set of agents within radius r of
agent i.

2.3 Performance Characteristics
Walker and Wooldridge, in [8], define two statistics to

assess the performance of strategy update functions: norm
convergence and average number of strategy changes. I will
also add social welfare as a performance characteristic to
examine which SUFs are best for an entire community of
agents.

Norm Convergence (Ck): One of the aims in designing a
good strategy update function is to have the agents in
a system converge on a strategy as quickly as possible.
Convergence is defined as the fraction of agents using
the most popular strategy at generation k:

Ck =
maxsi∈Ai |ch(si, k)|

|N | (4)

where ch(si, k) is the set of agents that have chosen
pure strategy si at time k.

Average Strategy Changes (Nk): We also want to de-
sign SUFs that are stable: meaning that it is disad-
vantageous to keep switching from one strategy to an-
other. Intuitively, in real-world situations, switching
strategies might incur a cost. For example, if a com-
pany decides to switch from one operating system to
another. We want to minimize the average number of
changes made by an agent at each generation k:

Nk =

∑
i∈N sc(i, k)

|N | (5)

where sc(i, k) returns 1 if agent i changes strategies at
time k, 0 otherwise.

Social Welfare (Wk): Since we are concerned with coor-
dination games and the prisoner’s dilemma, we want
the adapted convention to be good for every agent in
the community. We want all agents in the community

Coord. Pareto Prisoner’s

Cheaptalk 90 88 100
Tit-for-Tat - - 90
HCR 79 96 61

Majority 55 57 -
Utilitarian 94 96 100
Altruistic 74 100 100

Table 2: Experimentally Determined Values of Ck, for k =
250.

to be happy, rather than a select few individual agents.
For this reason, we record the average utility of each
agent at generation k:

Wk =

∑
γ∈Γk

∑η
i=1 ui(γ, si, s−i)

η |Γk|
(6)

where Γk is the set of games played in generation k, η is
the number of agents that play in an instance of a game
(in this case, η = 2) and ui(γ, si, s−i) is the utility
gained by player i in game γ given that they played
strategy si and their opponents played strategies s−i.

3. EXPERIMENTAL RESULTS
The six strategy update functions were tested on each of

the different games. Each simulation ran for 250 genera-
tions and results are averaged over 25 iterations to avoid
any statistical abnormalities. Each experiment consisted of
2000 agents (N = 2000) with half of the agents initialized
to the pure strategy p(C) = 1 while the other half were ini-
tialized to p(C) = 0. For the following results, all agents
were given the same strategy update function. Interactions
between SUFs will be examined in section 5. For the Locally
Altruistic SUF, the radius is set to 5.

3.1 Convergence - Ck
The experimentally determined values for Ck, for k = 250,

are given in Table 2. Note that these values are displayed
as percentages.

Based on the results in Table 2, we make the following
observations:

• The SUFs with Ck = 100 convergence actually con-
verge to 100% at about k ≈ 50, therefore these strategy
update functions are exceptionally fast at converging.

• The Majority update function is useless with equal
numbers of uniform randomly distributed agents. The
only thing contributing to any convergence is random-
ness.

• HCR is fairly slow at converging in The Coordination
Game and The Prisoner’s Dilemma. This is due to
the fact that we have uniform randomly distributed
agents, therefore on average, agents will play against
half that cooperate and half that defect until the pop-
ulation becomes close to reaching a convention.

• The Altruistic update function does not converge very
well for the coordination game. This is due to the fact
that there is no unique rational convention to converge
to, therefore subsets of co-located agents choose the



Coord. Pareto Prisoner’s

Cheaptalk 10.5 11.4 0.0
Tit-for-Tat - - 9.8
HCR 1.0 0.3 332.2

Majority 2.0 1.7 -
Utilitarian 0.4 0.4 0.0
Altruistic 1.3 0.0 0.0

Table 3: Experimentally Determined Values of Nk, for k =
250. All values are multiplied by 103.

same strategy, but distal agents may not. This com-
munity building phenomenon will be elaborated upon
in section 5.1.

• The non-HCR self-interested SUFs converge rather steadily
in general, and HCR converges quite will in The Pareto
Game.

• The new Utilitarian and Altriustic SUFs compete very
well with the other strategy update functions; espe-
cially when there is a unique rational convention.

3.2 Strategy Changes - Nk
One possible issue with the Cheaptalk and Tit-for-Tat

functions is the number of strategy changes that an agent
might make. If these changes are costly, then the nice con-
vergence properties could be rendered completely moot. Let
us examine the experimentally determined values for Nk for
k = 250 in Table 3. We can make the following observations
from Table 3:

• Tit-for-Tat is not very stable and Cheaptalk is not sta-
ble for the coordination games. This is not surprising
as Tit-for-Tat is a very dynamic strategy update func-
tion since it makes at least one strategy change for
every defection. Cheaptalk is also dynamic since it
does not rely on the agent’s memory or gross statistics
based on surrounding agents.

• HCR is exceptionally unstable in The Prisoner’s Dilemma.
This is consistent to the findings by Shoham and Ten-
nenholtz[7].

• The Majority SUF is surprisingly stable. This is likely
due to the fact that the strategy relies on the memory
of the agent and at k = 250, the majority strategy
likely does not change very quickly since the memory
is so well-established. Each additional generation has
1/k weight.

• The Altruistic and Utilitarian SUFs are very stable,
especially for games with a unique rational convention.

3.3 Social Welfare - Wk

Now we want to look at how much utility agents get from
converging onto a social convention. If agents converge on
an irrational convention, they may be suffering while they
could be converging just as quickly on a better convention
for themselves and everyone else. For this reason, we observe
the experimentally determined values for Wk for k = 250 in
Table 4: Note that the utility in The Coordination Game
ranges from [−1, 1], The Pareto Game ranges from [−1, 2]
and The Prisoner’s Dilemma ranges from [−4,−1]. We make
the following observations from Table 4:

Coord. Pareto Prisoner’s

Cheaptalk 0.96 1.06 -3.00
Tit-for-Tat - - -2.81
HCR 0.65 1.86 -2.22

Majority 0.46 0.87 -
Utilitarian 0.86 1.85 -1.00
Altruistic 0.75 2.00 -1.00

Table 4: Experimentally Determined Values of Wk, for k =
250.

• Cheaptalk and Tit-for-Tat converge to the Nash equi-
librium in The Prisoner’s Dilemma.

• HCR converges to the rational convention in The Pareto
Game, while Cheaptalk appears to be converging to
the non-rational Nash equilibrium. HCR converges
to a single rational convention in The Coordination
Game, but very slowly.

• The Utilitarian and Altruistic SUFs, and eventually
HCR always converge to a unique rational convention.

4. DISCUSSION OF PERFORMANCE
In this section, we will discuss the performance of the vari-

ous strategy update functions. We will begin with discussing
convergence, and then discuss stability and social welfare,
paying most attention to the functions that perform well in
earlier areas, but fail to perform in subsequent measures.

Walker and Wooldridge use only majority-based strategy
update functions to observe emergence in agent-based simu-
lations[8]. In Table 2, it is apparent that majority-based
SUFs will not perform well in our experimental environ-
ment. This is due to the fact that we have an equal number
of agents equally distributed in space. Any convergence to
a single strategy will be due to an unevenness caused by
the generation of random numbers; not by the virtue of the
strategy update function at selecting a proper strategy. Fur-
thermore, majority-based strategy update functions do not
take utility into account; just because something is popular,
does not mean that it is good for you.

It was observed that the Cheaptalk, Utilitarian and Altru-
istic strategy update functions converged extremely quickly
in the Prisoner’s Dilemma. Despite the high numbers for the
other convergence statistics, they do not compare to these
SUFs since they converged at k ≈ 50 rather than being still
in the act of converging at k = 250. It should also be noted
that all of these functions were comparable in the coordina-
tion games in terms of convergence, with the exception of the
Altruistic function, which was slow to converge in The Coor-
dination Game, but exceptionally fast in The Pareto Game.
This makes sense because the Altruistic function maximizes
utility in an area around the agent. If there is an equal num-
ber of agents following each Nash equilibrium, then the en-
tire area will quickly converge to the Pareto-optimal solution
as this yields greater social welfare. However, the interfer-
ence of the boundaries of co-located communities observable
in Figure 2a causes this strategy to converge slowly in The
Coordination Game since no strategy is obviously better.

Similarly to the results found by Shoham and Tennen-
holtz, HCR is extremely slow to converge to a rational con-
vention in The Prisoner’s Dilemma[7]. We also found that



it was quite slow to converge to a convention in The Coordi-
nation Game, when there are multiple rational conventions.
This is contrary to their findings, but we have changed the
simulation environment. However, HCR does manage to
converge quickly in the Pareto Game.

Now that we have established that every strategy update
function other HCR and Majority converges rather well for
all cases, we can see how they stack up in terms of stability.

The only really notably unstable SUFs, other than the
obvious HCR, are Cheaptalk in the coordination games and
Tit-for-Tat. The instability of Cheaptalk seems obvious in
the coordination games since the agent that receives the
communication will always change their strategy to that of
their opponent, whether it is Pareto-optimal or not. With
equally distributed agents following different strategies, these
strategy changes will be very frequent. Tit-for-Tat will cause
two changes in strategy for every defection followed by a co-
operation, therefore this strategy is not ideal when changing
strategies incurs a cost.

At this point, the only SUFs that really survive scrutiny
for this simulation environment are Utilitarianism and Al-
truism.

Not only do the Utilitarian and Altruistic strategy update
functions converge quickly and remain stable, but they also
converge to the desired rational conventions. For this rea-
son, the Altruistic and Utilitarian strategy update functions
seem more promising than any of the self-interested strategy
update functions.

All performance characteristics considered, the Altruis-
tic SUF seems to perform the best in a coordination game
where there is a Pareto-optimal equilibrium and communica-
tion is costless, and the Utilitarian update function seems to
perform best for The Prisoner’s Dilemma and Coordination
Game.

If locality is desired, then the Utilitarian strategy update
function is an excellent replacement for HCR. We can still
converge to the rational convention while only sacrificing
locality for semi-locality. This is a very plausible and inex-
pensive constraint relaxation.

5. INTERESTING EMERGENT BEHAVIOURS
There are some notable behaviours that occur in some of

the simulations above, as well as when interactions between
different strategy update functions are introduced. These
interesting behaviours include: community building, bully-
ing, and enlightenment. As one can see from the names
of the behaviours, they will have interesting parallels and
implications on the way that people behave in real society.

5.1 Community Building
A community can be defined as a set of co-located indi-

viduals that share similar customs, values, and conventions.
Groups of individuals that are co-located tend to develop
similar conventions because there is a need within society to
cooperate in order to succeed individually, and as a whole.
A trivial example of this is with greeting customs: a hand-
shake is a completely arbitrary way to greet someone, but
it serves to let another person know that you wish to act
in a civil manner. However, the convergence on a particu-
lar convention occurs mainly because agents are co-located
and must interact with one another on a regular basis. A
separate community that is distal in space might develop
a completely different convention that serves the same pur-

pose. For instance, in some Eastern countries they bow to
greet someone instead of performing a handshake. These ar-
bitrary acts perform the same purpose, but were developed
separately by isolated communities.

In Figure 2, we can observe that this form of co-location-
based community building and convention adaptation is ap-
parent with the Altruistic and, to a lesser extent, Utilitarian
strategy update functions. The agents eventually conform
to a single convention, but if we isolated them, we would
observe stability within both groups of agents. The effect is
so strong that it even works, to a degree, in a game with a
Pareto-optimal outcome. This phenomenon shows that the
Utilitarian and Altruistic strategy update functions might
be good models for how people come to converge on a com-
pletely arbitrary convention that may or may not award less
utility than another arbitrary convention.

5.2 Enlightenment
The fact that agents have agreed to conform to a specific

convention does not mean that it is the best convention pos-
sible. Co-located agents might be ignorant to better ways,
happily conforming to a Pareto-dominated equilibrium when
they could be converging to a Pareto-optimal equilibrium.
For instance, a community might believe that horses are
merely a good source of food, therefore they hunt them. A
distal tribe might also have horses nearby, but they have do-
mesticated them and treat them with respect as contributing
members of society. The horses and humans have formed a
symbiotic relationship of labour for nutritious food and care.
What happens if a member of the domestication group goes
to the group that hunts horses for food and teaches them
how to domesticate the horses so that they can increase their
labour capacity? If the members of the horse-hunting tribe
see the potential gains in utility and are not too stubborn to
adopt a new way of life, they will increase the social welfare
of the group (and the horses) by adopting domestication.

In Figure 3, we set the Pareto-optimal outcome to be 5
times better than the Pareto-dominated equilibrium. The
agents that follow the Pareto-optimal convention are given a
Stubborn SUF and their density is set to 0.1. The agents fol-
lowing the other equilibrium are given a Utilitarian SUF and
their density is set to 5. Notice how the population slowly
converges to the Pareto-optimal outcome. Given a finite
memory or periodic memory resets, this convergence would
occur with much greater speed (corresponding to agents in
the population dying out over time and passing their teach-
ings to their children). Take note as well that this conver-
gence to the Pareto-optimal convention would also be at-
tained by using the HCR strategy update function. This
phenomenon demonstrates how a utility maximizing strat-
egy update function coupled with a memory will have the
capacity to be ‘enlightened’ with a strategy that gives a
higher amount of utility.

5.3 Bullying
What would happen if instead of being enlightened, a co-

operating population is invaded by a few bullies that maxi-
mize their own utility by defecting and taking advantage of
the polite, cooperating population? This might occur in an
anonymous online auction system, where a small number of
the sellers are dishonest and accept the money, but fail to
send the item to the winning bidder.

Figure 4 demonstrates something similar to this situation



(a) Locally Altruistic agents playing The Coordination
Game at k = 10.

(b) Locally Altruistic agents playing The Pareto Game at
k = 10.

(c) Utilitarian agents playing The Coordination Game at
k = 50.

(d) Utilitarian agents playing The Pareto Game at k = 50.

Figure 2: Community-centred agents playing coordination games and forming communities.

(a) The population distribution at k = 1. (b) The population distribution at k = 250.

Figure 3: Utilitarian agents interacting with stubborn, enlightened agents following a rational convention.



(a) Average utility over time using the Tit-for-Tat strategy. (b) Average utility over time using the Utilitarian function.

Figure 4: Cooperating agents interacting with less-numerous stubborn, defecting agents in The Prisoner’s Dilemma.

where we use the Prisoner’s Dilemma and a small number
of stubborn, defecting agents. The density of the defecting
agents is set to 1, while the density of the cooperating agents
is set to 10. Figure 4a shows the average utility of the agents
if the cooperating agents use the Tit-for-Tat strategy update
function. Figure 4b shows the average utility of the agents
if the cooperating agents use the Utilitarian SUF. As you
can see, the Tit-for-Tat strategy results in a vicious cycle
of defection where the population eventually converges to
a convention of defection (which is the Nash equilibrium).
However, if agents adopt a Utilitarian strategy, they lose
against the defecting agents, but the cooperating agents do
not end up defecting and obtain a social welfare close to
that where all agents follow the rational convention. Unfor-
tunately, the small population of bullies win out the most,
but that is a small price to pay for greater social and per-
sonal welfare.

The obvious solution to this problem is to add identity,
and thereby, reputation to the agents. In this case if a Tit-
for-Tat strategy was adopted where the defection was only
against specific agents that defected in the past, the Tit-
for-Tat strategy would perform better than the Utilitarian
function. Bullies would be punished, and the rational con-
vention would be maintained between cooperating agents.
The addition of identity and reputation to agents is used by
eBay and discourages honest users from partaking in trans-
actions with users that have a poor reputation.

6. CONCLUSIONS AND FUTURE WORK
This research was motivated by a concern that the High-

est Cumulative Reward strategy update function might be
slow or unable to converge to a rational social convention.
We wanted to find strategy update functions that would be
able to always converge to a rational convention that fits
human moral standards and that would be realistic in a hu-
man social setting. Furthermore, we wanted to assess the
performance of various popular strategy update functions in
this new environment to see which perform well in terms of
convergence, stability and welfare.

We showed that the Utilitarian, and Altruistic strategy
update functions perform best in terms of convergence and

stability. Furthermore, we showed that the Utilitarian and
Altruistic SUFs usually3 converge to the rational conven-
tion, as they are community-centred and concerned with
the welfare of other agents in the community. HCR, on
the other hand, converges to the rational convention, but
does so exceptionally slowly compared to the new strategy
update functions.

In general, utility-concerned, community-centred strategy
update functions have desirable properties for coordination
and cooperation games in settings with anonymous agents.

One important assumption that was made was the fact
that the game being played by the agents was well-known.
Future work could examine if community-centred agents per-
form well in stochastic or Bayesian environments.

In addition, the distribution of the agents’ location and
movement was extremely simplistic. Future work could also
examine if the results found in this simulation would extend
to more complex movements and agent distributions and
what kind of interesting, human-like behaviours emerge.

Subsequent work could also examine what kind of new
strategy update functions perform well for coordination and
cooperation games, other than Tit-for-Tat when agents are
given identity. Social structure could also be added to the
environment, where, for instance, some agents are authori-
ties.

In fact, any relaxation of assumptions that could make
the simulations more world-like are desired and should be
examined with respect to emergent conventions in order to
better understand how humans can act optimally, rationally,
and morally in a social and individual welfare maximizing
fashion.

The ability to improve and extend this research is bound-
less and should be tackled with vigour.
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