Extensive Form Games

CPSC 532A Lecture 7

Extensive Form Games

CPSC 532A Lecture 7, Slide 1

æ

イロト イヨト イヨト イヨト

Lecture Overview

2 Computing Correlated Equilibria

- 3 Perfect-Information Extensive-Form Games
- ④ Subgame Perfection

(4回) (4回) (4回)

Computational Problems in Domination

- Identifying strategies dominated by a pure strategy
 - polynomial, straightforward algorithm
- Identifying strategies dominated by a mixed strategy
 - polynomial, somewhat tricky LP
- Identifying strategies that survive iterated elimination
 - repeated calls to the above LP
- Asking whether a strategy survives iterated elimination under all elimination orderings
 - polynomial for strict domination (elimination doesn't matter)
 - NP-complete otherwise

・回 ・ ・ ヨ ・ ・ ヨ ・ …

Rationalizability

- Rather than ask what is irrational, ask what is a best response to some beliefs about the opponent
 - assumes opponent is rational
 - assumes opponent knows that you and the others are rational
 - ...
- Equilibrium strategies are always rationalizable; so are lots of other strategies (but not everything).
- In two-player games, rationalizable ⇔ survives iterated removal of strictly dominated strategies.

・日・ ・ヨ・ ・ヨ・

Formal definition

Definition (Correlated equilibrium)

Given an *n*-agent game G = (N, A, u), a correlated equilibrium is a tuple (v, π, σ) , where v is a tuple of random variables $v = (v_1, \ldots, v_n)$ with respective domains $D = (D_1, \ldots, D_n)$, π is a joint distribution over v, $\sigma = (\sigma_1, \ldots, \sigma_n)$ is a vector of mappings $\sigma_i : D_i \mapsto A_i$, and for each agent i and every mapping $\sigma'_i : D_i \mapsto A_i$ it is the case that

$$\sum_{d\in D} \pi(d)u_i\left(\sigma_1(d_1),\ldots,\sigma_n(d_n)\right) \ge \sum_{d\in D} \pi(d)u_i\left(\sigma_1'(d_1),\ldots,\sigma_n'(d_n)\right)$$

(同) (注) (注) 二日

Existence

Theorem

For every Nash equilibrium σ^* there exists a corresponding correlated equilibrium σ .

- This is easy to show:
 - let $D_i = A_i$
 - let $\pi(d) = \prod_{i \in N} \sigma_i^*(d_i)$
 - σ_i maps each d_i to the corresponding a_i .
- Thus, correlated equilibria always exist

< ≞ > < ≞ > ...

Remarks

- Not every correlated equilibrium is equivalent to a Nash equilibrium
 - thus, correlated equilibrium is a weaker notion than Nash
- Any convex combination of the payoffs achievable under correlated equilibria is itself realizable under a correlated equilibrium
 - start with the Nash equilibria (each of which is a CE)
 - introduce a second randomizing device that selects which CE the agents will play
 - regardless of the probabilities, no agent has incentive to deviate
 - the probabilities can be adjusted to achieve any convex combination of the equilibrium payoffs
 - the randomizing devices can be combined

2

<回と < 回と < 回と -

Lecture Overview

2 Computing Correlated Equilibria

3 Perfect-Information Extensive-Form Games

④ Subgame Perfection

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Computing CE

$$\sum_{\substack{a \in A \mid a_i \in a}} p(a)u_i(a) \ge \sum_{\substack{a \in A \mid a'_i \in a}} p(a)u_i(a'_i, a_{-i}) \quad \forall i \in N, \, \forall a_i, a'_i \in A_i$$

$$p(a) \ge 0 \qquad \qquad \forall a \in A$$

$$\sum_{\substack{a \in A}} p(a) = 1$$

• variables: p(a); constants: $u_i(a)$

æ

- - 4 回 ト - 4 回 ト

Computing CE

$$\sum_{\substack{a \in A \mid a_i \in a}} p(a)u_i(a) \ge \sum_{\substack{a \in A \mid a'_i \in a}} p(a)u_i(a'_i, a_{-i}) \quad \forall i \in N, \, \forall a_i, a'_i \in A_i$$

$$p(a) \ge 0 \qquad \qquad \forall a \in A$$

$$\sum_{\substack{a \in A}} p(a) = 1$$

- variables: p(a); constants: $u_i(a)$
- we could find the social-welfare maximizing CE by adding an objective function

maximize:
$$\sum_{a \in A} p(a) \sum_{i \in N} u_i(a).$$

<回> < 回 > < 回 > < 回 >

Why are CE easier to compute than NE?

$$\sum_{a \in A \mid a_i \in a} p(a)u_i(a) \ge \sum_{a \in A \mid a'_i \in a} p(a)u_i(a'_i, a_{-i}) \quad \forall i \in N, \, \forall a_i, a'_i \in A_i$$

$$p(a) \ge 0 \qquad \qquad \forall a \in A$$

$$\sum_{a \in A} p(a) = 1$$

- intuitively, correlated equilibrium has only a single randomization over outcomes, whereas in NE this is constructed as a product of independent probabilities.
- To change this program so that it finds NE, the first constraint would be

$$\sum_{a \in A} u_i(a) \prod_{j \in N} p_j(a_j) \ge \sum_{a \in A} u_i(a'_i, a_{-i}) \prod_{j \in N \setminus \{i\}} p_j(a_j) \quad \forall i \in N, \, \forall a'_i \in A_i.$$

• This is a nonlinear constraint!

• = • • = •

Lecture Overview

2 Computing Correlated Equilibria

Operation Stress Perfect-Information Extensive-Form Games

④ Subgame Perfection

★ 문 → < 문 →</p>

< 1[™] >

Introduction

- The normal form game representation does not incorporate any notion of sequence, or time, of the actions of the players
- The extensive form is an alternative representation that makes the temporal structure explicit.
- Two variants:
 - perfect information extensive-form games
 - imperfect-information extensive-form games

A (finite) perfect-information game (in extensive form) is defined by the tuple $(N, A, H, Z, \chi, \rho, \sigma, u)$, where:

• Players: N is a set of n players

A (finite) perfect-information game (in extensive form) is defined by the tuple $(N, A, H, Z, \chi, \rho, \sigma, u)$, where:

- Players: N
- Actions: A is a (single) set of actions

< ∃ >

A (finite) perfect-information game (in extensive form) is defined by the tuple $(N, A, H, Z, \chi, \rho, \sigma, u)$, where:

- Players: N
- Actions: A
- Choice nodes and labels for these nodes:
 - Choice nodes: H is a set of non-terminal choice nodes

< ∃ >.

A (finite) perfect-information game (in extensive form) is defined by the tuple $(N, A, H, Z, \chi, \rho, \sigma, u)$, where:

- Players: N
- Actions: A
- Choice nodes and labels for these nodes:
 - Choice nodes: H
 - Action function: $\chi: H \to 2^A$ assigns to each choice node a set of possible actions

- < 注 → - < 注 → -

A (finite) perfect-information game (in extensive form) is defined by the tuple $(N, A, H, Z, \chi, \rho, \sigma, u)$, where:

- Players: N
- Actions: A
- Choice nodes and labels for these nodes:
 - Choice nodes: H
 - Action function: $\chi: H \to 2^A$
 - Player function: $\rho:H\to N$ assigns to each non-terminal node h a player $i\in N$ who chooses an action at h

・回 ・ ・ ヨ ・ ・ ヨ ・ …

A (finite) perfect-information game (in extensive form) is defined by the tuple $(N, A, H, Z, \chi, \rho, \sigma, u)$, where:

- Players: N
- Actions: A
- Choice nodes and labels for these nodes:
 - Choice nodes: H
 - Action function: $\chi: H \to 2^A$
 - Player function: $\rho: H \to N$
- Terminal nodes: Z is a set of terminal nodes, disjoint from H

★ E ► < E ►</p>

A (finite) perfect-information game (in extensive form) is defined by the tuple $(N, A, H, Z, \chi, \rho, \sigma, u)$, where:

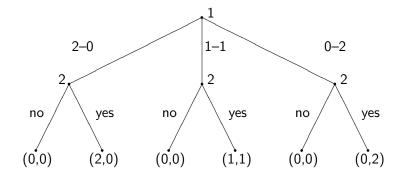
- Players: N
- Actions: A
- Choice nodes and labels for these nodes:
 - Choice nodes: H
 - Action function: $\chi: H \to 2^A$
 - Player function: $\rho: H \to N$
- Terminal nodes: Z
- Successor function: $\sigma: H \times A \to H \cup Z$ maps a choice node and an action to a new choice node or terminal node such that for all $h_1, h_2 \in H$ and $a_1, a_2 \in A$, if $\sigma(h_1, a_1) = \sigma(h_2, a_2)$ then $h_1 = h_2$ and $a_1 = a_2$
 - The choice nodes form a tree, so we can identify a node with its history.

A (finite) perfect-information game (in extensive form) is defined by the tuple $(N, A, H, Z, \chi, \rho, \sigma, u)$, where:

- Players: N
- Actions: A
- Choice nodes and labels for these nodes:
 - Choice nodes: H
 - Action function: $\chi: H \to 2^A$
 - Player function: $\rho: H \to N$
- Terminal nodes: Z
- Successor function: $\sigma: H \times A \rightarrow H \cup Z$
- Utility function: $u = (u_1, \ldots, u_n)$; $u_i : Z \to \mathbb{R}$ is a utility function for player *i* on the terminal nodes *Z*

・ 「「・ ・ 」 ・ ・ 」 正

Example: the sharing game

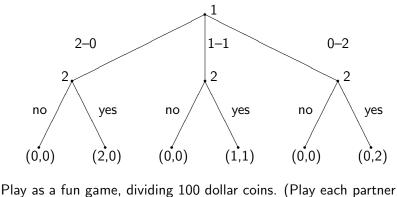


< ≣⇒

æ

Extensive Form Games

Example: the sharing game



only once.)

Pure Strategies

• In the sharing game (splitting 2 coins) how many pure strategies does each player have?

▲ 문 ▶ | ▲ 문 ▶

Pure Strategies

- In the sharing game (splitting 2 coins) how many pure strategies does each player have?
 - player 1: 3; player 2: 8

▲ 문 ▶ | ▲ 문 ▶

Pure Strategies

- In the sharing game (splitting 2 coins) how many pure strategies does each player have?
 - player 1: 3; player 2: 8
- Overall, a pure strategy for a player in a perfect-information game is a complete specification of which deterministic action to take at every node belonging to that player.

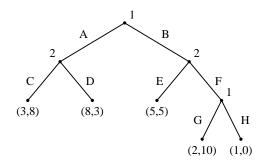
Definition (pure strategies)

Let $G=(N,A,H,Z,\chi,\rho,\sigma,u)$ be a perfect-information extensive-form game. Then the pure strategies of player i consist of the cross product

ŀ

$$\underset{u \in H, \rho(h)=i}{\times} \chi(h)$$

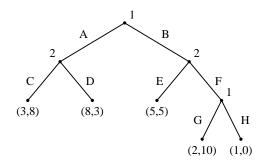
白 ト イヨト イヨト



What are the pure strategies for player 2?

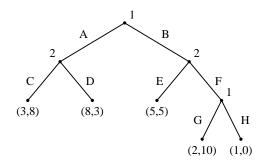
Extensive Form Games

CPSC 532A Lecture 7, Slide 16

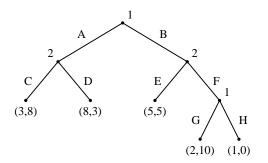


What are the pure strategies for player 2?

• $S_2 = \{(C, E); (C, F); (D, E); (D, F)\}$



What are the pure strategies for player 2? • $S_2 = \{(C, E); (C, F); (D, E); (D, F)\}$ What are the pure strategies for player 1?



What are the pure strategies for player 2?

• $S_2 = \{(C, E); (C, F); (D, E); (D, F)\}$

What are the pure strategies for player 1?

- $S_1 = \{(B,G); (B,H), (A,G), (A,H)\}$

Nash Equilibria

Given our new definition of pure strategy, we are able to reuse our old definitions of:

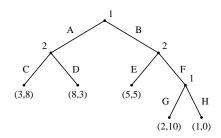
- mixed strategies
- best response
- Nash equilibrium

Theorem

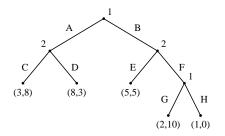
Every perfect information game in extensive form has a PSNE

This is easy to see, since the players move sequentially.

In fact, the connection to the normal form is even tighter
we can "convert" an extensive-form game into normal form

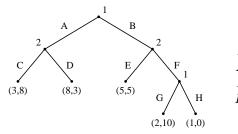


• In fact, the connection to the normal form is even tighter • we can "convert" an extensive-form game into normal form



	CE	CF	DE	DF
AG	3,8	3, 8	8,3	8,3
AH	3,8	3, 8	8,3	8,3
BG	5, 5	2, 10	5, 5	2, 10
BH	5, 5	1,0	5, 5	1, 0

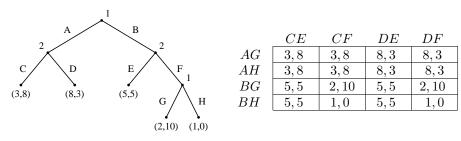
In fact, the connection to the normal form is even tighter
we can "convert" an extensive-form game into normal form



	CE	CF	DE	DF
AG	3,8	3,8	8,3	8,3
AH	3, 8	3,8	8,3	8,3
BG	5, 5	2, 10	5,5	2, 10
BH	5, 5	1, 0	5, 5	1, 0

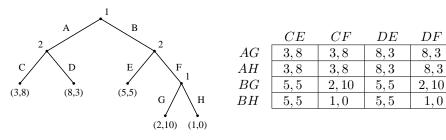
- this illustrates the lack of compactness of the normal form
 - games aren't always this small
 - even here we write down 16 payoff pairs instead of 5

- In fact, the connection to the normal form is even tighter
 - we can "convert" an extensive-form game into normal form



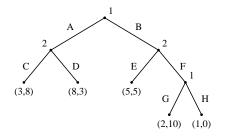
- while we can write any extensive-form game as a NF, we can't do the reverse.
 - e.g., matching pennies cannot be written as a perfect-information extensive form game

- In fact, the connection to the normal form is even tighter
 - we can "convert" an extensive-form game into normal form



• What are the (three) pure-strategy equilibria?

- In fact, the connection to the normal form is even tighter
 - we can "convert" an extensive-form game into normal form



	CE	CF	DE	DF
AG	3,8	3, 8	8,3	8,3
AH	3,8	3, 8	8,3	8, 3
BG	5, 5	2, 10	5, 5	2,10
BH	5, 5	1,0	5, 5	1, 0

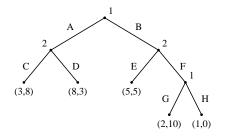
• What are the (three) pure-strategy equilibria?

•
$$(A,G), (C,F)$$

• $(A,H), (C,F)$

• (A, H), (C, F)• (B, H), (C, E)

- In fact, the connection to the normal form is even tighter
 - we can "convert" an extensive-form game into normal form



	CE	CF	DE	DF
AG	3,8	3, 8	8,3	8,3
AH	3,8	3, 8	8,3	8, 3
BG	5, 5	2, 10	5, 5	2,10
BH	5, 5	1,0	5, 5	1, 0

• What are the (three) pure-strategy equilibria?

•
$$(A,G), (C,F)$$

• $(A,H), (C,F)$

• (A, H), (C, F)• (B, H), (C, E)

Lecture Overview

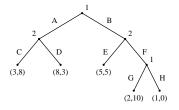
2 Computing Correlated Equilibria

3 Perfect-Information Extensive-Form Games

(E)

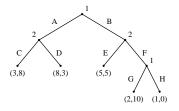
< 67 ▶

Subgame Perfection



- There's something intuitively wrong with the equilibrium (B,H), (C,E)
 - Why would player 1 ever choose to play H if he got to the second choice node?
 - After all, G dominates H for him

Subgame Perfection



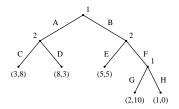
- There's something intuitively wrong with the equilibrium (B,H), (C,E)
 - Why would player 1 ever choose to play H if he got to the second choice node?
 - After all, G dominates H for him
 - He does it to threaten player 2, to prevent him from choosing ${\cal F},$ and so gets 5
 - However, this seems like a non-credible threat
 - If player 1 reached his second decision node, would he really follow through and play *H*?

Formal Definition

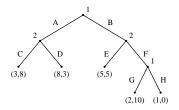
- Define subgame of G rooted at h:
 - the restriction of G to the descendents of H.
- Define set of subgames of G:
 - $\bullet\,$ subgames of G rooted at nodes in G

- s is a subgame perfect equilibrium of G iff for any subgame G' of G, the restriction of s to G' is a Nash equilibrium of G'
- Notes:
 - $\bullet\,$ since G is its own subgame, every SPE is a NE.
 - this definition rules out "non-credible threats"

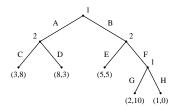
4 B K 4 B K



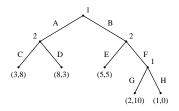
- Which equilibria from the example are subgame perfect?
 - (A, G), (C, F):
 - (B, H), (C, E):
 - (A, H), (C, F):



- Which equilibria from the example are subgame perfect?
 - (A, G), (C, F): is subgame perfect
 - (B, H), (C, E):
 - (A, H), (C, F):



- Which equilibria from the example are subgame perfect?
 - (A,G), (C,F): is subgame perfect
 - (B, H), (C, E): (B, H) is an non-credible threat; not subgame perfect
 - (A, H), (C, F):



- Which equilibria from the example are subgame perfect?
 - (A,G), (C,F): is subgame perfect
 - (B, H), (C, E): (B, H) is an non-credible threat; not subgame perfect
 - (A, H), (C, F): (A, H) is also non-credible, even though H is "off-path"

< ∃ >.