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Recap

Lecture Overview

@ Recap
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Recap

Computing equilibria of zero-sum games

minimize U}

subject to Z ui(ar, ag) - s3> < U Ya, € A1
as€As
(ZQGAQ
$52 >0 Vas € Ay

@ This formulation gives us the minmax strategy for player 2.

@ To get the minmax strategy for player 1, we need to solve a
second (analogous) LP.
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Recap

Computing Maxmin Strategies in General-Sum Games

To compute a maxmin strategy for player 1 in an arbitrary 2-player
game G:
o Create a new game G’ where player 2's payoffs are just the
negatives of player 1's payoffs.
@ By the minmax theorem, equilibrium strategies for player 1 in
G’ are equivalent to a maxmin strategies
@ Thus, to find a maxmin strategy for GG, find an equilibrium
strategy for G'.
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Recap

Domination

o Let s; and s be two strategies for player 4, and let S_; be is
the set of all possible strategy profiles for the other players

Definition

s; strictly dominates s if Vs_; € S_;, ui(ss, i) > (s}, s—;)

Definition

s; weakly dominates s} if Vs_; € S_;, u;(si,5-s) > ui(s}, s—;) and
ds_; € S, u;(ss, s_i) > ui(sh, s—i)

Definition

s; very weakly dominates s} if Vs_; € S_;, w;(ss,5-:) > ui(s}, s—;)
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Recap

Iterated Removal of Dominated Strategies

@ This process preserves Nash equilibria.
e strict dominance: all equilibria preserved.
e weak or very weak dominance: at least one equilibrium
preserved.
@ Thus, it can be used as a preprocessing step before computing
an equilibrium
e Some games are solvable using this technique.
@ What about the order of removal when there are multiple
dominated strategies?
e strict dominance: doesn't matter.
e weak or very weak dominance: can affect which equilibria are
preserved.
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Fun Game

Lecture Overview

© Fun Game
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Fun Game

Fun game

L H S
L 90, 90 0,0 0,40
B 0,0 180, 180 0,40
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Fun Game

Fun game

L H S
L 90, 90 0,0 400, 40
B 0,0 180, 180 0,40

Computing Domination; Correlated Equilibria

CPSC 532A Lecture 6, Slide 8



Fun Game

Fun game

L H S
L 90, 90 0,0 0, 40; 400, 40
B 0,0 180, 180 0,40

@ What's the equilibrium?
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Fun Game

Fun game

L H S
L 90, 90 0,0 0, 40; 400, 40
B 0,0 180, 180 0,40

@ What's the equilibrium?

e 50-50 L-H dominates S for column, so we have a standard

coordination game.
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Fun Game

Fun game

L H S
L 90, 90 0,0 0, 40; 400, 40
B 0,0 180, 180 0,40

@ What's the equilibrium?

e 50-50 L-H dominates S for column, so we have a standard

coordination game.

@ What happens when people play?
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Fun Game

Fun game

L H S
L 90, 90 0,0 0, 40; 400, 40
B 0,0 180, 180 0,40

@ What's the equilibrium?

e 50-50 L-H dominates S for column, so we have a standard

coordination game.

@ What happens when people play?
o with 0,40, 96% row and 84% column choose the high payoff
H, coordination occurs 80% of the time.
e with 400, 40, 64% row and 76% column chose H; coordination
on H,H 32% of the time, coordination on L,L 16% of the time,
uncoordinated over half the time
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Computing

Lecture Overview

© Computational Problems Involving Domination
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Computing

Computational Problems in Domination

Identifying strategies dominated by a pure strategy
Identifying strategies dominated by a mixed strategy
Identifying strategies that survive iterated elimination

Asking whether a strategy survives iterated elimination under
all elimination orderings

o We'll assume that i's utility function is strictly positive
everywhere (why is this OK?)
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Computing

Is s; strictly dominated by any pure strategy?

Try to identify some pure strategy that is strictly better than s; for
any pure strategy profile of the others.
for all pure strategies a; € A; for player i where a; # s; do
dom «— true
for all pure strategy profiles a_; € A_; for the players other than ¢
do
if ui(si,a,i) > ui(ai,a,i) then
dom «— false
break
end if
end for
if dom = true then return true
end for
return false
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Computing

Is s; strictly dominated by any pure strategy?

Try to identify some pure strategy that is strictly better than s; for

any pure strategy profile of the others.
for all pure strategies a; € A; for player i where a; # s; do
dom «— true

for all pure strategy profiles a_; € A_; for the players other than ¢
do
if ui(si,a,i) > ui(ai,a,i) then
dom «— false
break
end if
end for
if dom = true then return true
end for
return false

@ What is the complexity of this procedure?
@ Why don't we have to check mixed strategies of —i7?
@ Minor changes needed to test for weak, very weak dominance.
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Computing

Constraints for determining whether s; is strictly

dominated by any mixed strategy

Z pjui(aj, a,i) > ui(si,a,i) Va,z- S A,i
JEA;

pj =20 Vi€ A;
> pi=1

JEA;
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Computing

Constraints for determining whether s; is strictly

dominated by any mixed strategy

Z pjui(aj, a,i) > ui(si,a,i) Va,z- S A,i
JEA;

pj =20 Vi€ A;
> pi=1

JEA;

@ What's wrong with this program?
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Computing

Constraints for determining whether s; is strictly

dominated by any mixed strategy

Z pjui(aj, a,i) > ui(si,a,i) Va,z- S A,i
JEA;

pj =20 Vi€ A;
> pi=1

JEA;

@ What's wrong with this program?

e strict inequality in the first constraint means we don't have an
LP
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Computing

LP for determining whether s; is strictly dominated by any

mixed strategy

minimize E Dj

JEA;

subject to Z pijui(aj, a—;) > ui(si,a—;) Ya_; € A_;
JEA;
p; >0 Vje A

@ This is clearly an LP. Why is it a solution to our problem?
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Computing

LP for determining whether s; is strictly dominated by any

mixed strategy

minimize E Dj

JEA;

subject to Z pijui(aj, a—;) > ui(si,a—;) Ya_; € A_;
JEA;
p; >0 Vje A

@ This is clearly an LP. Why is it a solution to our problem?

o if a solution exists with Zj p; < 1 then we can add 1 — Zj Dj
to some py and we'll have a dominating mixed strategy (since
utility was assumed to be positive everywhere)

@ Our original approach works for very weak domination
@ For weak domination we can use that program with a different
objective function trick.
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Computing

|dentifying strategies that survive iterated elimination

@ This can be done by repeatedly solving our LPs: solving a
polynomial number of LPs is still in P.

o Checking whether every pure strategy of every player is
dominated by any other mixed strategy requires us to solve at
worst 3, |As| linear programs.

e Each step removes one pure strategy for one player, so there
can be at most ), v (|A4;| — 1) steps.

o Thus we need to solve O((n - max; |A;|)?) linear programs.
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Computing

Further questions about iterated elimination

O (Strategy Elimination) Does there exist some elimination
path under which the strategy s; is eliminated?

@ (Reduction ldentity) Given action subsets A, C A; for each
player i, does there exist a maximally reduced game where
each player ¢ has the actions A}?

© (Uniqueness) Does every elimination path lead to the same
reduced game?

O (Reduction Size) Given constants k; for each player ¢, does
there exist a maximally reduced game where each player ¢ has
exactly k; actions?
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Computing

Further questions about iterated elimination

O (Strategy Elimination) Does there exist some elimination
path under which the strategy s; is eliminated?

@ (Reduction ldentity) Given action subsets A, C A; for each
player i, does there exist a maximally reduced game where
each player ¢ has the actions A}?

© (Uniqueness) Does every elimination path lead to the same
reduced game?

O (Reduction Size) Given constants k; for each player ¢, does
there exist a maximally reduced game where each player ¢ has
exactly k; actions?

o For iterated strict dominance these problems are all in P.

o For iterated weak or very weak dominance these problems are
all N'P-complete.
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Rationalizability

Lecture Overview

@ Rationalizability
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Rationalizability

Rationalizability

@ Rather than ask what is irrational, ask what is a best response
to some beliefs about the opponent

@ assumes opponent is rational
e assumes opponent knows that you and the others are rational

@ Examples
e is heads rational in matching pennies?
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Rationalizability

Rationalizability

@ Rather than ask what is irrational, ask what is a best response
to some beliefs about the opponent

@ assumes opponent is rational
e assumes opponent knows that you and the others are rational

@ Examples
e is heads rational in matching pennies?
e is cooperate rational in prisoner’s dilemma?

@ Will there always exist a rationalizable strategy?

CPSC 532A Lecture 6, Slide 17

Computing Domination; Correlated Equilibria



Rationalizability

Rationalizability

@ Rather than ask what is irrational, ask what is a best response
to some beliefs about the opponent

@ assumes opponent is rational
e assumes opponent knows that you and the others are rational

@ Examples
e is heads rational in matching pennies?
e is cooperate rational in prisoner’s dilemma?

@ Will there always exist a rationalizable strategy?
o Yes, equilibrium strategies are always rationalizable.
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Rationalizability

Rationalizability

@ Rather than ask what is irrational, ask what is a best response
to some beliefs about the opponent

@ assumes opponent is rational
e assumes opponent knows that you and the others are rational
o ...

@ Examples

e is heads rational in matching pennies?
e is cooperate rational in prisoner’s dilemma?

@ Will there always exist a rationalizable strategy?
o Yes, equilibrium strategies are always rationalizable.

@ Furthermore, in two-player games, rationalizable < survives
iterated removal of strictly dominated strategies.
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Correlated Equilibrium

Lecture Overview

© Correlated Equilibrium
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Correlated Equilibrium

Pithy Quote

If there is intelligent life on other planets, in a majority of
them, they would have discovered correlated equilibrium
before Nash equilibrium.

— Roger Myerson
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Correlated Equilibrium

EIES

o Consider again Battle of the Sexes.

o Intuitively, the best outcome seems a 50-50 split between
(F,F) and (B, B).

e But there's no way to achieve this, so either someone loses out
(unfair) or both players often miscoordinate

@ Another classic example: traffic game

go wait
go | —100,—-100 10,0
B 0,10 —10,-10
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Correlated Eq

Intuition

@ What is the natural solution here?
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Correlated Equilibrium

Intuition

@ What is the natural solution here?

e A traffic light: a fair randomizing device that tells one of the
agents to go and the other to wait.

@ Benefits:
o the negative payoff outcomes are completely avoided
e fairness is achieved
e the sum of social welfare exceeds that of any Nash equilibrium
@ We could use the same idea to achieve the fair outcome in
battle of the sexes.

@ Our example presumed that everyone perfectly observes the
random event; not required.

o More generally, some random variable with a commonly
known distribution, and a private signal to each player about
the outcome.

e signal doesn't determine the outcome or others’ signals;
however, correlated
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Correlated Equilibrium

Formal definition

Definition (Correlated equilibrium)

Given an n-agent game G = (N, A, u), a correlated equilibrium is
a tuple (v, 7, 0), where v is a tuple of random variables

v = (v1,...,U,) with respective domains D = (Dy,...,D,), 7 is
a joint distribution over v, 0 = (01,...,0y,) is a vector of
mappings o; : D; — A;, and for each agent i and every mapping
o} : D; — A, it is the case that

> w(dyui (01(da), .- on(dn)) =D w(d)u; (05 (dr), . .., 07,(dn))

deD deD

V.
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Correlated Equilibrium

Existence

For every Nash equilibrium c* there exists a corresponding
correlated equilibrium o.

@ This is easy to show:
o let Dz = Al
o let m(d) = [,y 07 (di)
e 0; maps each d; to the corresponding a;.

@ Thus, correlated equilibria always exist
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Correlated Equilibrium

Remarks

@ Not every correlated equilibrium is equivalent to a Nash
equilibrium
e thus, correlated equilibrium is a weaker notion than Nash

@ Any convex combination of the payoffs achievable under
correlated equilibria is itself realizable under a correlated
equilibrium

o start with the Nash equilibria (each of which is a CE)

e introduce a second randomizing device that selects which CE
the agents will play

e regardless of the probabilities, no agent has incentive to deviate

o the probabilities can be adjusted to achieve any convex
combination of the equilibrium payoffs

e the randomizing devices can be combined
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