Recap	Fun Game	Computing	Rationalizability	Correlated Equilibrium
(Computing	Domination	; Correlated E	quilibria
		CPSC 532A	Lecture 6	

Computing Domination; Correlated Equilibria

CPSC 532A Lecture 6, Slide 1

æ

・ロン ・雪 と ・ ヨ と ・ ヨ と

Recap	Fun Game	Computing	Rationalizability	Correlated Equilibrium
Lecture	Overview			

2 Fun Game

3 Computational Problems Involving Domination

A Rationalizability

5 Correlated Equilibrium

æ

| 4 回 2 4 U = 2 4 U =

 Recap
 Fun Game
 Computing
 Rationalizability
 Correlated Equilibrium

 Computing equilibria of zero-sum games
 Computing
 Correlated Equilibrium
 Correlated Equilibrium

$$\begin{array}{ll} \mbox{minimize} & U_1^*\\ \mbox{subject to} & \sum_{a_2 \in A_2} u_1(a_1,a_2) \cdot s_2^{a_2} \leq U_1^* \qquad \forall a_1 \in A_1\\ & \sum_{a_2 \in A_2} s_2^{a_2} = 1\\ & s_2^{a_2} \geq 0 \qquad \qquad \forall a_2 \in A_2 \end{array}$$

- This formulation gives us the minmax strategy for player 2.
- To get the minmax strategy for player 1, we need to solve a second (analogous) LP.

・ 同 ト ・ 三 ト ・ 三 ト

To compute a maxmin strategy for player 1 in an arbitrary 2-player game G:

- Create a new game G' where player 2's payoffs are just the negatives of player 1's payoffs.
- By the minmax theorem, equilibrium strategies for player 1 in G' are equivalent to a maxmin strategies
- Thus, to find a maxmin strategy for G, find an equilibrium strategy for G'.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ …

Recap	Fun Game	Computing	Rationalizability	Correlated Equilibrium
Domina	tion			

• Let s_i and s'_i be two strategies for player i, and let S_{-i} be is the set of all possible strategy profiles for the other players

Definition

 s_i strictly dominates s'_i if $\forall s_{-i} \in S_{-i}$, $u_i(s_i, s_{-i}) > u_i(s'_i, s_{-i})$

Definition

 s_i weakly dominates s'_i if $\forall s_{-i} \in S_{-i}$, $u_i(s_i, s_{-i}) \ge u_i(s'_i, s_{-i})$ and $\exists s_{-i} \in S_{-i}$, $u_i(s_i, s_{-i}) > u_i(s'_i, s_{-i})$

Definition

 s_i very weakly dominates s'_i if $\forall s_{-i} \in S_{-i}$, $u_i(s_i, s_{-i}) \ge u_i(s'_i, s_{-i})$

・ 同 ト ・ ヨ ト ・ ヨ ト

- This process preserves Nash equilibria.
 - strict dominance: all equilibria preserved.
 - weak or very weak dominance: at least one equilibrium preserved.
- Thus, it can be used as a preprocessing step before computing an equilibrium
 - Some games are solvable using this technique.
- What about the order of removal when there are multiple dominated strategies?
 - strict dominance: doesn't matter.
 - weak or very weak dominance: can affect which equilibria are preserved.

個 と く ヨ と く ヨ と

Recap	Fun Game	Computing	Rationalizability	Correlated Equilibrium
Lecture	Overview			

3 Computational Problems Involving Domination

A Rationalizability

5 Correlated Equilibrium

Computing Domination; Correlated Equilibria

3

| 4 回 2 4 U = 2 4 U =

	L	H	S
L	90, 90	0, 0	0,40
B	0, 0	180, 180	0,40

2

	L	H	S
L	90,90	0, 0	400, 40
B	0,0	180, 180	0,40

2

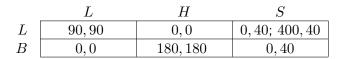
Recap	Fun Game	Computing	Rationalizability	Correlated Equilibrium
Fun gam	e			

	L	H	S
L	90,90	0, 0	0,40;400,40
B	0,0	180, 180	0,40

• What's the equilibrium?

æ

A D > A D >



- What's the equilibrium?
 - $\bullet\,$ 50-50 L-H dominates S for column, so we have a standard coordination game.

3

< ≣⇒

< 🗇 >

	L	H	S
L	90,90	0, 0	0,40;400,40
B	0,0	180, 180	0,40

- What's the equilibrium?
 - 50-50 L-H dominates ${\cal S}$ for column, so we have a standard coordination game.
- What happens when people play?

æ

・ 回 ト ・ ヨ ト ・ ヨ ト

	L	H	S
L	90,90	0, 0	0,40;400,40
B	0, 0	180, 180	0,40

- What's the equilibrium?
 - $\bullet\,$ 50-50 L-H dominates S for column, so we have a standard coordination game.
- What happens when people play?
 - with 0,40, 96% row and 84% column choose the high payoff *H*, coordination occurs 80% of the time.
 - with 400, 40, 64% row and 76% column chose *H*; coordination on H,H 32% of the time, coordination on L,L 16% of the time, uncoordinated over half the time

▲圖▶ ▲屋▶ ▲屋▶ ---

Recap	Fun Game	Computing	Rationalizability	Correlated Equilibrium
Lecture	Overview			

2 Fun Game

3 Computational Problems Involving Domination

4 Rationalizability

5 Correlated Equilibrium

Computing Domination; Correlated Equilibria

CPSC 532A Lecture 6, Slide 9

- < ≣ →

Recap	Fun Game	Computing	Rationalizability	Correlated Equilibrium
Comput	ational Pro	blems in Do	omination	

- Identifying strategies dominated by a pure strategy
- Identifying strategies dominated by a mixed strategy
- Identifying strategies that survive iterated elimination
- Asking whether a strategy survives iterated elimination under all elimination orderings
- We'll assume that *i*'s utility function is strictly positive everywhere (why is this OK?)

Recap Fun Game Computing Rationalizability Correlated Equilibrium Is s_i strictly dominated by any pure strategy?

Try to identify some pure strategy that is strictly better than s_i for any pure strategy profile of the others.

```
for all pure strategies a_i \in A_i for player i where a_i \neq s_i do
```

```
dom \gets true
```

for all pure strategy profiles $a_{-i} \in A_{-i}$ for the players other than i do

```
if u_i(s_i, a_{-i}) \ge u_i(a_i, a_{-i}) then

dom \leftarrow false

break

end if

end for

if dom = true then return true

end for

return false
```

★御▶ ★理▶ ★理▶ → 理

Recap Fun Game Computing Rationalizability Correlated Equilibrium Is s_i strictly dominated by any pure strategy?

Try to identify some pure strategy that is strictly better than s_i for any pure strategy profile of the others.

```
for all pure strategies a_i \in A_i for player i where a_i \neq s_i do
```

```
dom \gets true
```

for all pure strategy profiles $a_{-i} \in A_{-i}$ for the players other than i do

```
if u_i(s_i, a_{-i}) \ge u_i(a_i, a_{-i}) then

dom \leftarrow false

break

end if

end for

if dom = true then return true

end for

return false
```

- What is the complexity of this procedure?
- Why don't we have to check mixed strategies of -i?
- Minor changes needed to test for weak, very weak dominance.

Recap Fun Game Computing Rationalizability Correlated Equilibrium Constraints for determining whether s_i is strictly dominated by any mixed strategy

$$\begin{split} \sum_{j \in A_i} p_j u_i(a_j, a_{-i}) > u_i(s_i, a_{-i}) & \forall a_{-i} \in A_{-i} \\ p_j \ge 0 & \forall j \in A_i \\ \sum_{j \in A_i} p_j = 1 \end{split}$$

Computing Domination; Correlated Equilibria

Recap Fun Game Computing Rationalizability Correlated Equilibrium Constraints for determining whether s_i is strictly dominated by any mixed strategy

$$\begin{split} \sum_{j \in A_i} p_j u_i(a_j, a_{-i}) > u_i(s_i, a_{-i}) & \forall a_{-i} \in A_{-i} \\ p_j \ge 0 & \forall j \in A_i \\ \sum_{j \in A_i} p_j = 1 \end{split}$$

• What's wrong with this program?

Recap Fun Game Computing Rationalizability Correlated Equilibrium Constraints for determining whether s_i is strictly dominated by any mixed strategy

$$\begin{split} \sum_{j \in A_i} p_j u_i(a_j, a_{-i}) > u_i(s_i, a_{-i}) & \forall a_{-i} \in A_{-i} \\ p_j \ge 0 & \forall j \in A_i \\ \sum_{j \in A_i} p_j = 1 \end{split}$$

- What's wrong with this program?
 - strict inequality in the first constraint means we don't have an LP

Recap Fun Game Computing Rationalizability Correlated Equilibrium LP for determining whether s_i is strictly dominated by any mixed strategy

$$\begin{array}{ll} \mbox{minimize} & \displaystyle \sum_{j \in A_i} p_j \\ \mbox{subject to} & \displaystyle \sum_{j \in A_i} p_j u_i(a_j, a_{-i}) \geq u_i(s_i, a_{-i}) & \quad \forall a_{-i} \in A_{-i} \\ & \displaystyle p_j \geq 0 & \quad \forall j \in A_i \end{array}$$

• This is clearly an LP. Why is it a solution to our problem?

Recap Fun Game Computing Rationalizability Correlated Equilibrium LP for determining whether s_i is strictly dominated by any mixed strategy

$$\begin{array}{ll} \mbox{minimize} & \displaystyle \sum_{j \in A_i} p_j \\ \mbox{subject to} & \displaystyle \sum_{j \in A_i} p_j u_i(a_j, a_{-i}) \geq u_i(s_i, a_{-i}) & \quad \forall a_{-i} \in A_{-i} \\ & \displaystyle p_j \geq 0 & \quad \forall j \in A_i \end{array}$$

- This is clearly an LP. Why is it a solution to our problem?
 - if a solution exists with $\sum_j p_j < 1$ then we can add $1 \sum_j p_j$ to some p_k and we'll have a dominating mixed strategy (since utility was assumed to be positive everywhere)
- Our original approach works for very weak domination
- For weak domination we can use that program with a different objective function trick.

Computing Domination; Correlated Equilibria

- This can be done by repeatedly solving our LPs: solving a polynomial number of LPs is still in \mathcal{P} .
 - Checking whether every pure strategy of every player is dominated by any other mixed strategy requires us to solve at worst $\sum_{i\in N} |A_i|$ linear programs.
 - Each step removes one pure strategy for one player, so there can be at most $\sum_{i\in N}(|A_i|-1)$ steps.
 - Thus we need to solve $O((n \cdot \max_i |A_i|)^2)$ linear programs.

伺 と く き と く き と

RecapFun GameComputingRationalizabilityCorrelated EquilibriumFurther questions about iterated elimination

- (Strategy Elimination) Does there exist some elimination path under which the strategy s_i is eliminated?
- ② (Reduction Identity) Given action subsets A'_i ⊆ A_i for each player i, does there exist a maximally reduced game where each player i has the actions A'_i?
- (Uniqueness) Does every elimination path lead to the same reduced game?
- (Reduction Size) Given constants k_i for each player i, does there exist a maximally reduced game where each player i has exactly k_i actions?

・吊り ・ヨン ・ヨン ・ヨ

RecapFun GameComputingRationalizabilityCorrelated EquilibriumFurther questions about iterated elimination

- (Strategy Elimination) Does there exist some elimination path under which the strategy s_i is eliminated?
- ② (Reduction Identity) Given action subsets A'_i ⊆ A_i for each player i, does there exist a maximally reduced game where each player i has the actions A'_i?
- (Uniqueness) Does every elimination path lead to the same reduced game?
- (Reduction Size) Given constants k_i for each player i, does there exist a maximally reduced game where each player i has exactly k_i actions?
 - For iterated strict dominance these problems are all in \mathcal{P} .
 - For iterated weak or very weak dominance these problems are all \mathcal{NP} -complete.

イロン イ部ン イヨン イヨン 三日

Recap	Fun Game	Computing	Rationalizability	Correlated Equilibrium
Lecture	Overview			

< 🗇 🕨

★ 문 ► ★ 문 ►

CPSC 532A Lecture 6. Slide 16

2 Fun Game

3 Computational Problems Involving Domination

A Rationalizability

5 Correlated Equilibrium

Computing Domination; Correlated Equilibria

- Rather than ask what is irrational, ask what is a best response to some beliefs about the opponent
 - assumes opponent is rational
 - assumes opponent knows that you and the others are rational
 - ...
- Examples
 - is *heads* rational in matching pennies?

< 注→ < 注→

- Rather than ask what is irrational, ask what is a best response to some beliefs about the opponent
 - assumes opponent is rational
 - assumes opponent knows that you and the others are rational
 - ...
- Examples
 - is *heads* rational in matching pennies?
 - is *cooperate* rational in prisoner's dilemma?

(3)

- Rather than ask what is irrational, ask what is a best response to some beliefs about the opponent
 - assumes opponent is rational
 - assumes opponent knows that you and the others are rational
 - ...
- Examples
 - is *heads* rational in matching pennies?
 - is *cooperate* rational in prisoner's dilemma?
- Will there always exist a rationalizable strategy?

(3)

- Rather than ask what is irrational, ask what is a best response to some beliefs about the opponent
 - assumes opponent is rational
 - assumes opponent knows that you and the others are rational
 - ...
- Examples
 - is *heads* rational in matching pennies?
 - is *cooperate* rational in prisoner's dilemma?
- Will there always exist a rationalizable strategy?
 - Yes, equilibrium strategies are always rationalizable.

(3)

Recap	Fun Game	Computing	Rationalizability	Correlated Equilibrium
Rational	lizability			

- Rather than ask what is irrational, ask what is a best response to some beliefs about the opponent
 - assumes opponent is rational
 - assumes opponent knows that you and the others are rational
 - ...
- Examples
 - is *heads* rational in matching pennies?
 - is *cooperate* rational in prisoner's dilemma?
- Will there always exist a rationalizable strategy?
 - Yes, equilibrium strategies are always rationalizable.
- Furthermore, in two-player games, rationalizable ⇔ survives iterated removal of strictly dominated strategies.

Recap	Fun Game	Computing	Rationalizability	Correlated Equilibrium
Lecture	Overview			

< 🗇 🕨

★ 문 ► ★ 문 ►

CPSC 532A Lecture 6. Slide 18

3 Computational Problems Involving Domination

A Rationalizability

Computing Domination; Correlated Equilibria

If there is intelligent life on other planets, in a majority of them, they would have discovered correlated equilibrium before Nash equilibrium.

- Roger Myerson

< 🗇 >

- Consider again Battle of the Sexes.
 - Intuitively, the best outcome seems a 50-50 split between (F,F) and (B,B).
 - But there's no way to achieve this, so either someone loses out (unfair) or both players often miscoordinate
- Another classic example: traffic game

	go	wait
go	-100, -100	10, 0
B	0, 10	-10, -10

▲ 프 ► < 프 ►

Recap	Fun Game	Computing	Rationalizability	Correlated Equilibrium
Intuition				

• What is the natural solution here?

Recap	Fun Game	Computing	Rationalizability	Correlated Equilibrium
Intuition				

- What is the natural solution here?
 - A traffic light: a fair randomizing device that tells one of the agents to go and the other to wait.
- Benefits:
 - the negative payoff outcomes are completely avoided
 - fairness is achieved
 - the sum of social welfare exceeds that of any Nash equilibrium
- We could use the same idea to achieve the fair outcome in battle of the sexes.
- Our example presumed that everyone perfectly observes the random event; not required.
- More generally, some random variable with a commonly known distribution, and a private signal to each player about the outcome.
 - signal doesn't determine the outcome or others' signals; however, correlated

Definition (Correlated equilibrium)

Given an *n*-agent game G = (N, A, u), a correlated equilibrium is a tuple (v, π, σ) , where v is a tuple of random variables $v = (v_1, \ldots, v_n)$ with respective domains $D = (D_1, \ldots, D_n)$, π is a joint distribution over v, $\sigma = (\sigma_1, \ldots, \sigma_n)$ is a vector of mappings $\sigma_i : D_i \mapsto A_i$, and for each agent i and every mapping $\sigma'_i : D_i \mapsto A_i$ it is the case that

$$\sum_{d\in D} \pi(d)u_i\left(\sigma_1(d_1),\ldots,\sigma_n(d_n)\right) \ge \sum_{d\in D} \pi(d)u_i\left(\sigma_1'(d_1),\ldots,\sigma_n'(d_n)\right)$$

▲□ ▶ ▲ □ ▶ ▲ □ ▶ - □ □

Recap	Fun Game	Computing	Rationalizability	Correlated Equilibrium
Existence	e			

Theorem

For every Nash equilibrium σ^* there exists a corresponding correlated equilibrium σ .

- This is easy to show:
 - let $D_i = A_i$
 - let $\pi(d) = \prod_{i \in N} \sigma_i^*(d_i)$
 - σ_i maps each d_i to the corresponding a_i .
- Thus, correlated equilibria always exist

Recap	Fun Game	Computing	Rationalizability	Correlated Equilibrium
Remarks				

- Not every correlated equilibrium is equivalent to a Nash equilibrium
 - thus, correlated equilibrium is a weaker notion than Nash
- Any convex combination of the payoffs achievable under correlated equilibria is itself realizable under a correlated equilibrium
 - start with the Nash equilibria (each of which is a CE)
 - introduce a second randomizing device that selects which CE the agents will play
 - regardless of the probabilities, no agent has incentive to deviate
 - the probabilities can be adjusted to achieve any convex combination of the equilibrium payoffs
 - the randomizing devices can be combined