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Recap

Lecture Overview

@ Recap
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Recap

What are solution concepts?

@ Solution concept: a subset of the outcomes in the game that
are somehow interesting.

@ There is an implicit computational problem of finding these
outcomes given a particular game.

@ Depending on the concept, existence can be an issue.

Solution concepts we've seen so far:
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Recap

What are solution concepts?

@ Solution concept: a subset of the outcomes in the game that
are somehow interesting.

@ There is an implicit computational problem of finding these
outcomes given a particular game.

@ Depending on the concept, existence can be an issue.

Solution concepts we've seen so far:
@ Pareto-optimal outcome
@ Pure-strategy Nash equilibrium
@ Mixed-strategy Nash equilibrium
@ Other Nash variants:

o weak Nash equilibrium
e strict Nash equilibrium

@ maxmin strategy profile

@ minmax strategy profile
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Recap

Mixed Strategies

@ Define a strategy s; for agent i as any probability distribution
over the actions A;.
e pure strategy: only one action is played with positive
probability
e mixed strategy: more than one action is played with positive
probability

o these actions are called the support of the mixed strategy
@ Let the set of all strategies for ¢ be .5;
@ Let the set of all strategy profiles be S = 57 x ... X 5,,.
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Recap

Best Response and Nash Equilibrium

Our definitions of best response and Nash equilibrium generalize
from actions to strategies.
@ Best response:
o sf € BR(s_;) iff ¥s; € Si, wi(sy, s—i) > wi(8i,5—4)

@ Nash equilibrium:
o s=(s1,...,8y) is a Nash equilibrium iff Vi, s; € BR(s_;)

@ Every finite game has a Nash equilibrium! [Nash, 1950]
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Recap

Maxmin and Minmax

Definition (Maxmin)

The maxmin strategy for player ¢ is arg max,, mins_, u;(s1, $2),
and the maxmin value for player i is max;, mins_, u;(s1, S2).

Definition (Minmax, 2-player)

In a two-player game, the minmax strategy for player i against
player —i is arg ming, maxs_, u_;(s;, 5—;), and player —i's minmax
value is ming, maxs_, u_;(si, S—;).

We can also generalize minmax to n players.
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Recap

Minmax Theorem

Theorem (Minimax theorem (von Neumann, 1928))

In any finite, two-player, zero-sum game, in any Nash equilibrium
each player receives a payoff that is equal to both his maxmin
value and his minmax value.

@ Each player’'s maxmin value is equal to his minmax value. By
convention, the maxmin value for player 1 is called the value of the
game.

@ For both players, the set of maxmin strategies coincides with the set
of minmax strategies.

© Any maxmin strategy profile (or, equivalently, minmax strategy
profile) is a Nash equilibrium. Furthermore, these are all the Nash
equilibria. Consequently, all Nash equilibria have the same payoff
vector (namely, those in which player 1 gets the value of the game).
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Recap

Saddle Point: Matching Pennies
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LP

Lecture Overview

© Linear Programming
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LP

Linear Programming

A linear program is defined by:
@ a set of real-valued variables
@ a linear objective function
e a weighted sum of the variables
@ a set of linear constraints

o the requirement that a weighted sum of the variables must be
greater than or equal to some constant
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LP

Linear Programming

Given n variables and m constraints, variables x and constants w,

a and b:
n
maximize sz’&“z’
i=1
n
subject to Zaijxi < bj Vi=1...m
i=1
z; € {0,1} Vi=1...n

@ These problems can be solved in polynomial time using
interior point methods.
o Interestingly, the (worst-case exponential) simplex method is
often faster in practice.
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Computing

Lecture Overview

© Computational Problems Involving Maxmin
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Computing

Computing equilibria of zero-sum games

minimize U}

subject to Z ui(a, ag) - s3> < U Va1 € A1
a2€A2
>
as€As
592 >0 Vas € Ay
@ variables:

e Uj is the expected utility for player 1
o s52 is player 2's probability of playing action az under his
mixed strategy

@ each uj(ay,az) is a constant.
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Computing

Computing equilibria of zero-sum games

minimize U}

subject to Z ui(a, ag) - s3> < U Va1 € A1
a2€A2
a2€A2
s92 >0 Vas € Ay

@ 5o is a valid probability distribution.
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Computing

Computing equilibria of zero-sum games

minimize U{

subject to Z ui(ar, az) - s3> < U Ya, € Ay
azGAz
a2€A2
592 >0 Yag € As

e U is as small as possible.

Computing Minmax; Dominance CPSC 532A Lecture 5, Slide 13



Computing

Computing equilibria of zero-sum games

minimize U}

subject to Z u(ar,az) - s3> < U Ya, € Ay
as€As
(ZQGAQ
592 >0 Vag € Ay

@ Player 1's expected utility for playing each of his actions under
player 2's mixed strategy is no more than U7
o Because U7 is minimized, this constraint will be tight for some
actions: the support of player 1's mixed strategy.
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Computing

Computing equilibria of zero-sum games

minimize U}

subject to Z ui(ar, ag) - s3> < U Ya, € A1
as€As
QQGAQ
$52 >0 Vas € Ay

@ This formulation gives us the minmax strategy for player 2.

@ To get the minmax strategy for player 1, we need to solve a
second (analogous) LP.
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Computing

Computing Maxmin Strategies in General-Sum Games

Let's say we want to compute a maxmin strategy for player 1 in an
arbitrary 2-player game G.
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Computing

Computing Maxmin Strategies in General-Sum Games

Let's say we want to compute a maxmin strategy for player 1 in an
arbitrary 2-player game G.

o Create a new game G’ where player 2's payoffs are just the
negatives of player 1's payoffs.

@ The maxmin strategy for player 1 in G does not depend on
player 2's payoffs

o Thus, the maxmin strategy for player 1 in G is the same as the
maxmin strategy for player 1 in G’

@ By the minmax theorem, equilibrium strategies for player 1 in

G’ are equivalent to a maxmin strategies

@ Thus, to find a maxmin strategy for GG, find an equilibrium
strategy for G'.
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Domination

Lecture Overview

@ Domination
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Domination

Domination

o Let s; and s be two strategies for player 4, and let S_; be is
the set of all possible strategy profiles for the other players

Definition

s; strictly dominates s if Vs_; € S_;, ui(ss, i) > (s}, s—;)

Definition

s; weakly dominates s} if Vs_; € S_;, u;(si,5-s) > ui(s}, s—;) and
ds_; € S, u;(ss, s_i) > ui(sh, s—i)

Definition

s; very weakly dominates s} if Vs_; € S_;, w;(ss,5-:) > ui(s}, s—;)
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Domination

Equilibria and dominance

@ If one strategy dominates all others, we say it is dominant.

@ A strategy profile consisting of dominant strategies for every
player must be a Nash equilibrium.

e An equilibrium in strictly dominant strategies must be unique.
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Domination

Equilibria and dominance

@ If one strategy dominates all others, we say it is dominant.

@ A strategy profile consisting of dominant strategies for every
player must be a Nash equilibrium.

e An equilibrium in strictly dominant strategies must be unique.
@ Consider Prisoner’'s Dilemma again

e not only is the only equilibrium the only non-Pareto-optimal
outcome, but it's also an equilibrium in strictly dominant
strategies!
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Fun Game

Lecture Overview

© Fun Game
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Fun Game

Traveler's Dilemma

Two travelers purchase identical African masks while on a
tropical vacation. Their luggage is lost on the return trip,
and the airline asks them to make independent claims for
compensation. In anticipation of excessive claims, the
airline representative announces: “We know that the
bags have identical contents, and we will entertain any
claim between $180 and $300, but you will each be
reimbursed at an amount that equals the minimum of the
two claims submitted. If the two claims differ, we will
also pay a reward R to the person making the smaller
claim and we will deduct a penalty R from the
reimbursement to the person making the larger claim.”
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Fun Game

Traveler's Dilemma

@ Action: choose an integer between 180 and 300

o If both players pick the same number, they both get that
amount as payoff

o If players pick a different number:

o the low player gets his number (L) plus some constant R
o the high player gets L — R, R = 5.

o Play this game once with a partner; play with as many
different partners as you like.
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Fun Game

Traveler's Dilemma

@ Action: choose an integer between 180 and 300
o If both players pick the same number, they both get that
amount as payoff
o If players pick a different number:
o the low player gets his number (L) plus some constant R
o the high player gets L — R, R = 5.
o Play this game once with a partner; play with as many
different partners as you like.

e Now set R = 180, and again play with as many partners as
you like.

Computing Minmax; Dominance CPSC 532A Lecture 5, Slide 20



Fun Game

Traveler's Dilemma

@ What is the equilibrium?
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Fun Game

Traveler's Dilemma

@ What is the equilibrium?
o (180,180) is the only equilibrium, for all R > 2.
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Fun Game

Traveler's Dilemma

@ What is the equilibrium?
o (180,180) is the only equilibrium, for all R > 2.
@ What happens?
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Fun Game

Traveler's Dilemma

@ What is the equilibrium?
o (180,180) is the only equilibrium, for all R > 2.
@ What happens?

e with R = 5 most people choose 295-300
e with R = 180 most people choose 180
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Iterated Removal

Lecture Overview

@ Iterated Removal of Dominated Strategies
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Iterated Removal

Dominated strategies

@ No equilibrium can involve a strictly dominated strategy

e Thus we can remove it, and end up with a strategically
equivalent game

o This might allow us to remove another strategy that wasn't
dominated before

e Running this process to termination is called iterated removal
of dominated strategies.
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Iterated Removal

Iterated Removal of Dominated Strategies: Example

L C R
3,1 0,1 0,0
1,1 1,1 5,0
0,1 4,1 0,0
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Iterated Removal

Iterated Removal of Dominated Strategies: Example

L C R
3,1 0,1 0,0
1,1 1,1 5,0
0,1 4,1 0,0

@ R is dominated by L.
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Iterated Removal

Iterated Removal of Dominated Strategies: Example

L C
3,1 0,1
1,1 1,1
0,1 4,1

Computing Minmax; Dominance
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Iterated Removal

Iterated Removal of Dominated Strategies: Example

L C
U 3,1 0,1
M 1,1 1,1
D 0,1 4,1

@ M is dominated by the mixed strategy that selects U and D

with equal probability.
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Iterated Removal

Iterated Removal of Dominated Strategies: Example

L C
3,1 0,1
0,1 4,1
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Iterated Removal

Iterated Removal of Dominated Strategies: Example

D 0,1 4,1

@ No other strategies are dominated.
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Iterated Removal

Iterated Removal of Dominated Strategies

@ This process preserves Nash equilibria.

e strict dominance: all equilibria preserved.
o weak or very weak dominance: at least one equilibrium
preserved.

@ Thus, it can be used as a preprocessing step before computing
an equilibrium
e Some games are solvable using this technique.
o Example: Traveler's Dilemmal
@ What about the order of removal when there are multiple
dominated strategies?
e strict dominance: doesn't matter.
e weak or very weak dominance: can affect which equilibria are
preserved.
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