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What are solution concepts?

Solution concept: a subset of the outcomes in the game that
are somehow interesting.

There is an implicit computational problem of finding these
outcomes given a particular game.

Depending on the concept, existence can be an issue.

Solution concepts we’ve seen so far:

Pareto-optimal outcome

Pure-strategy Nash equilibrium

Mixed-strategy Nash equilibrium

Other Nash variants:
weak Nash equilibrium
strict Nash equilibrium

maxmin strategy profile

minmax strategy profile
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Mixed Strategies

Define a strategy si for agent i as any probability distribution
over the actions Ai.

pure strategy: only one action is played with positive
probability
mixed strategy: more than one action is played with positive
probability

these actions are called the support of the mixed strategy

Let the set of all strategies for i be Si

Let the set of all strategy profiles be S = S1 × . . .× Sn.
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Best Response and Nash Equilibrium

Our definitions of best response and Nash equilibrium generalize
from actions to strategies.

Best response:

s∗i ∈ BR(s−i) iff ∀si ∈ Si, ui(s∗i , s−i) ≥ ui(si, s−i)

Nash equilibrium:

s = 〈s1, . . . , sn〉 is a Nash equilibrium iff ∀i, si ∈ BR(s−i)

Every finite game has a Nash equilibrium! [Nash, 1950]
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Maxmin and Minmax

Definition (Maxmin)

The maxmin strategy for player i is arg maxsi mins−i ui(s1, s2),
and the maxmin value for player i is maxsi mins−i ui(s1, s2).

Definition (Minmax, 2-player)

In a two-player game, the minmax strategy for player i against
player −i is arg minsi

maxs−i u−i(si, s−i), and player −i’s minmax
value is minsi maxs−i u−i(si, s−i).

We can also generalize minmax to n players.
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Minmax Theorem

Theorem (Minimax theorem (von Neumann, 1928))

In any finite, two-player, zero-sum game, in any Nash equilibrium
each player receives a payoff that is equal to both his maxmin
value and his minmax value.

1 Each player’s maxmin value is equal to his minmax value. By
convention, the maxmin value for player 1 is called the value of the
game.

2 For both players, the set of maxmin strategies coincides with the set
of minmax strategies.

3 Any maxmin strategy profile (or, equivalently, minmax strategy
profile) is a Nash equilibrium. Furthermore, these are all the Nash
equilibria. Consequently, all Nash equilibria have the same payoff
vector (namely, those in which player 1 gets the value of the game).

Computing Minmax; Dominance CPSC 532A Lecture 5, Slide 7



Recap LP Computing Domination Fun Game Iterated Removal

Saddle Point: Matching Pennies
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Linear Programming

A linear program is defined by:

a set of real-valued variables

a linear objective function

a weighted sum of the variables

a set of linear constraints

the requirement that a weighted sum of the variables must be
greater than or equal to some constant
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Linear Programming

Given n variables and m constraints, variables x and constants w,
a and b:

maximize
n∑

i=1

wixi

subject to
n∑

i=1

aijxi ≤ bj ∀j = 1 . . . m

xi ∈ {0, 1} ∀i = 1 . . . n

These problems can be solved in polynomial time using
interior point methods.

Interestingly, the (worst-case exponential) simplex method is
often faster in practice.
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Computing equilibria of zero-sum games

minimize U∗1

subject to
∑

a2∈A2

u1(a1, a2) · sa2
2 ≤ U∗1 ∀a1 ∈ A1∑

a2∈A2

sa2
2 = 1

sa2
2 ≥ 0 ∀a2 ∈ A2

variables:

U∗1 is the expected utility for player 1
sa2
2 is player 2’s probability of playing action a2 under his

mixed strategy

each u1(a1, a2) is a constant.
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Computing equilibria of zero-sum games

minimize U∗1

subject to
∑
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s2 is a valid probability distribution.
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Computing equilibria of zero-sum games

minimize U∗1

subject to
∑

a2∈A2

u1(a1, a2) · sa2
2 ≤ U∗1 ∀a1 ∈ A1∑

a2∈A2

sa2
2 = 1

sa2
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U∗1 is as small as possible.

Computing Minmax; Dominance CPSC 532A Lecture 5, Slide 13



Recap LP Computing Domination Fun Game Iterated Removal

Computing equilibria of zero-sum games

minimize U∗1

subject to
∑

a2∈A2

u1(a1, a2) · sa2
2 ≤ U∗1 ∀a1 ∈ A1∑

a2∈A2

sa2
2 = 1

sa2
2 ≥ 0 ∀a2 ∈ A2

Player 1’s expected utility for playing each of his actions under
player 2’s mixed strategy is no more than U∗1 .

Because U∗1 is minimized, this constraint will be tight for some
actions: the support of player 1’s mixed strategy.
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Computing equilibria of zero-sum games

minimize U∗1

subject to
∑

a2∈A2

u1(a1, a2) · sa2
2 ≤ U∗1 ∀a1 ∈ A1∑

a2∈A2

sa2
2 = 1

sa2
2 ≥ 0 ∀a2 ∈ A2

This formulation gives us the minmax strategy for player 2.

To get the minmax strategy for player 1, we need to solve a
second (analogous) LP.
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Computing Maxmin Strategies in General-Sum Games

Let’s say we want to compute a maxmin strategy for player 1 in an
arbitrary 2-player game G.

Create a new game G′ where player 2’s payoffs are just the
negatives of player 1’s payoffs.

The maxmin strategy for player 1 in G does not depend on
player 2’s payoffs

Thus, the maxmin strategy for player 1 in G is the same as the
maxmin strategy for player 1 in G′

By the minmax theorem, equilibrium strategies for player 1 in
G′ are equivalent to a maxmin strategies

Thus, to find a maxmin strategy for G, find an equilibrium
strategy for G′.
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Domination

Let si and s′i be two strategies for player i, and let S−i be is
the set of all possible strategy profiles for the other players

Definition

si strictly dominates s′i if ∀s−i ∈ S−i, ui(si, s−i) > ui(s′i, s−i)

Definition

si weakly dominates s′i if ∀s−i ∈ S−i, ui(si, s−i) ≥ ui(s′i, s−i) and
∃s−i ∈ S−i, ui(si, s−i) > ui(s′i, s−i)

Definition

si very weakly dominates s′i if ∀s−i ∈ S−i, ui(si, s−i) ≥ ui(s′i, s−i)
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Equilibria and dominance

If one strategy dominates all others, we say it is dominant.

A strategy profile consisting of dominant strategies for every
player must be a Nash equilibrium.

An equilibrium in strictly dominant strategies must be unique.

Consider Prisoner’s Dilemma again

not only is the only equilibrium the only non-Pareto-optimal
outcome, but it’s also an equilibrium in strictly dominant
strategies!
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Traveler’s Dilemma

Two travelers purchase identical African masks while on a
tropical vacation. Their luggage is lost on the return trip,
and the airline asks them to make independent claims for
compensation. In anticipation of excessive claims, the
airline representative announces: “We know that the
bags have identical contents, and we will entertain any
claim between $180 and $300, but you will each be
reimbursed at an amount that equals the minimum of the
two claims submitted. If the two claims differ, we will
also pay a reward R to the person making the smaller
claim and we will deduct a penalty R from the
reimbursement to the person making the larger claim.”
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Traveler’s Dilemma

Action: choose an integer between 180 and 300

If both players pick the same number, they both get that
amount as payoff

If players pick a different number:

the low player gets his number (L) plus some constant R
the high player gets L−R, R = 5.

Play this game once with a partner; play with as many
different partners as you like.

Now set R = 180, and again play with as many partners as
you like.
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Traveler’s Dilemma

What is the equilibrium?

(180, 180) is the only equilibrium, for all R ≥ 2.

What happens?

with R = 5 most people choose 295–300
with R = 180 most people choose 180

Computing Minmax; Dominance CPSC 532A Lecture 5, Slide 21



Recap LP Computing Domination Fun Game Iterated Removal

Traveler’s Dilemma

What is the equilibrium?

(180, 180) is the only equilibrium, for all R ≥ 2.

What happens?

with R = 5 most people choose 295–300
with R = 180 most people choose 180

Computing Minmax; Dominance CPSC 532A Lecture 5, Slide 21



Recap LP Computing Domination Fun Game Iterated Removal

Traveler’s Dilemma

What is the equilibrium?

(180, 180) is the only equilibrium, for all R ≥ 2.

What happens?

with R = 5 most people choose 295–300
with R = 180 most people choose 180

Computing Minmax; Dominance CPSC 532A Lecture 5, Slide 21



Recap LP Computing Domination Fun Game Iterated Removal

Traveler’s Dilemma

What is the equilibrium?

(180, 180) is the only equilibrium, for all R ≥ 2.

What happens?

with R = 5 most people choose 295–300
with R = 180 most people choose 180

Computing Minmax; Dominance CPSC 532A Lecture 5, Slide 21



Recap LP Computing Domination Fun Game Iterated Removal

Lecture Overview

1 Recap

2 Linear Programming

3 Computational Problems Involving Maxmin

4 Domination

5 Fun Game

6 Iterated Removal of Dominated Strategies

Computing Minmax; Dominance CPSC 532A Lecture 5, Slide 22



Recap LP Computing Domination Fun Game Iterated Removal

Dominated strategies

No equilibrium can involve a strictly dominated strategy

Thus we can remove it, and end up with a strategically
equivalent game
This might allow us to remove another strategy that wasn’t
dominated before
Running this process to termination is called iterated removal
of dominated strategies.
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Iterated Removal of Dominated Strategies: Example

L C R

U 3, 1 0, 1 0, 0

M 1, 1 1, 1 5, 0

D 0, 1 4, 1 0, 0

R is dominated by L.
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Iterated Removal of Dominated Strategies: Example

L C

U 3, 1 0, 1

M 1, 1 1, 1

D 0, 1 4, 1

M is dominated by the mixed strategy that selects U and D
with equal probability.
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Iterated Removal of Dominated Strategies: Example

L C

U 3, 1 0, 1

D 0, 1 4, 1

No other strategies are dominated.
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Iterated Removal of Dominated Strategies

This process preserves Nash equilibria.

strict dominance: all equilibria preserved.
weak or very weak dominance: at least one equilibrium
preserved.

Thus, it can be used as a preprocessing step before computing
an equilibrium

Some games are solvable using this technique.
Example: Traveler’s Dilemma!

What about the order of removal when there are multiple
dominated strategies?

strict dominance: doesn’t matter.
weak or very weak dominance: can affect which equilibria are
preserved.
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