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Designing optimal auctions

Definition (virtual valuation)

Bidder i’s virtual valuation is ψi(vi) = vi − 1−Fi(vi)
fi(vi)

.

Definition (bidder-specific reserve price)

Bidder i’s bidder-specific reserve price r∗i is the value for which
ψi(r∗i ) = 0.

Theorem

The optimal (single-good) auction is a sealed-bid auction in which
every agent is asked to declare his valuation. The good is sold to
the agent i = arg maxi ψi(v̂i), as long as vi > r∗i . If the good is
sold, the winning agent i is charged the smallest valuation that he
could have declared while still remaining the winner:
inf{v∗i : ψi(v∗i ) ≥ 0 and ∀j 6= i, ψi(v∗i ) ≥ ψj(v̂j)}.
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Analyzing optimal auctions

Optimal Auction:

winning agent: i = arg maxi ψi(v̂i), as long as vi > r∗i .

i is charged the smallest valuation that he could have declared
while still remaining the winner,
inf{v∗i : ψi(v∗i ) ≥ 0 and ∀j 6= i, ψi(v∗i ) ≥ ψj(v̂j)}.

it’s a second-price auction with a reserve price, held in virtual
valuation space.

neither the reserve prices nor the virtual valuation
transformation depends on the agent’s declaration

thus the proof that a second-price auction is
dominant-strategy truthful applies here as well.
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Going beyond IPV

common value model

motivation: oil well
winner’s curse
things can be improved by revealing more information

general model

IPV + common value
example motivation: private value plus resale
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Risk Attitudes

What kind of auction would the auctioneer prefer?

Buyer is not risk neutral:

no change under various risk attitudes for second price
in first-price, increasing bid amount increases probability of
winning, decreases profit. This is good for risk-averse bidder,
bad for risk-seeking bidder.
Risk averse, IPV: First � [Japanese = English = Second]
Risk seeking, IPV: Second � First

Auctioneer is not risk neutral:

revenue is fixed in first-price auction (the expected amount of
the second-highest bid)
revenue varies in second-price auction, with the same expected
value
thus, a risk-averse seller prefers first-price to second-price.
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Multiunit Auctions

now let’s consider a setting in which

there are k identical goods for sale in a single auction
every bidder only wants one unit

VCG in this setting:

every unit is sold for the amount of the k + 1st highest bid

revenue equivalence holds here, so all other methods of
setting prices lead to the same payments in equilibrium.
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Multiunit Demand

How does VCG behave when (some) bidders may want more than
a single unit of the good?

no longer a k + 1st-price auction

instead, all winning bidders who won the same number of
units will pay the same amount as each other.

the change in social welfare from dropping any of these bidders
is the same.

Bidders who win different numbers of units will not necessarily
pay the same per unit prices.

However, bidders who win larger numbers of units will pay at
least as much in total (not necessarily per unit) as bidders
who won smaller numbers of units

their impact on social welfare will always be at least as great

Combinatorial Auctions Lecture 21, Slide 9



Recap General Multiunit Auctions Combinatorial Auctions Bidding Languages

Multiunit Demand

How does VCG behave when (some) bidders may want more than
a single unit of the good?

no longer a k + 1st-price auction

instead, all winning bidders who won the same number of
units will pay the same amount as each other.

the change in social welfare from dropping any of these bidders
is the same.

Bidders who win different numbers of units will not necessarily
pay the same per unit prices.

However, bidders who win larger numbers of units will pay at
least as much in total (not necessarily per unit) as bidders
who won smaller numbers of units

their impact on social welfare will always be at least as great

Combinatorial Auctions Lecture 21, Slide 9



Recap General Multiunit Auctions Combinatorial Auctions Bidding Languages

Winner Determination for Multiunit Demand

Let m be the number of units available, and let v̂i(k) denote bidder
i’s declared valuation for being awarded k units.

It’s no longer computationally easy to identify the winners—now it’s
a (NP-complete) weighted knapsack problem:

maximize
∑
i∈N

∑
1≤k≤m

v̂i(k)xk,i (1)

subject to
∑
i∈N

∑
1≤k≤m

k · xk,i ≤ m (2)

∑
1≤k≤m

xk,i ≤ 1 ∀i ∈ N (3)

xk,i = {0, 1} ∀1 ≤ k ≤ m, i ∈ N (4)
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Winner Determination for Multiunit Demand

maximize
∑
i∈N

∑
1≤k≤m

v̂i(k)xk,i (1)

subject to
∑
i∈N

∑
1≤k≤m

k · xk,i ≤ m (2)

∑
1≤k≤m

xk,i ≤ 1 ∀i ∈ N (3)

xk,i = {0, 1} ∀1 ≤ k ≤ m, i ∈ N (4)

xk,i indicates whether bidder i is allocated exactly k units

maximize: sum of agents’ valuations for the chosen allocation

(2): number of units allocated does not exceed number available

(3): no more than one x·,i is nonzero for any i

(4): all x’s must be integers
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Multiunit Valuations

How can bidders express their valuations in a multiunit auction?

m homogeneous goods, let S denote some set

general: let p1, . . . , pm be arbitrary, non-negative real

numbers. Then v(S) =
∑|S|

j=1 pj .

downward sloping: general, but p1 ≥ p2 ≥ . . . ≥ pm

additive: v(S) = c|S|
single-item: v(S) = c if s 6= ∅; 0 otherwise

fixed-budget: v(S) = min(c|S|, b)
majority: v(S) = c if |S| ≥ m/2, 0 otherwise
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Advanced Multiunit Auctions

Unlimited supply: random sampling auctions

how to sell goods that cost nothing to produce, when the
valuation distribution is unknown?

Search engine advertising: position auctions

how to sell slots on the right-hand side of internet search
results
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Valuations for heterogeneous goods

now consider a case where multiple, heterogeneous goods are
being sold.

consider the sorts of valuations that agents could have in this
case:

complementarity: for sets S and T , v(S ∪ T ) > v(S) + v(T )
e.g., a left shoe and a right shoe

substitutability: v(S ∪ T ) < v(S) + v(T )
e.g., two tickets to different movies playing at the same time

substitutability is relatively easy to deal with

e.g., just sell the goods sequentially, or allow bid withdrawal

complementarity is trickier...
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Fun Game

Multiunit & Combinatorial Auctions 13

SAA Fun Game

• 9 plots of land for sale, geographically related as shown
• everyone has a private valuation, normally distributed with mean 50, stdev 5
• payoff:

– if you get one good other than #5: vi

– any two goods: 3vi

– any three (or more) goods: 5vi

• Rules:
– auctioneer moves from one good to the next sequentially, holding an English 

auction for each good.
– when there are no more bids for a given good, move on to the next good
– when there have been no bids for any of the 9 goods, end the auction

1 2 3

4 5 6

7 8 9

9 plots of land for sale, geographically related as shown

IPV, normally distributed with mean 50, stdev 5

payoff:

if you get one good other than #5: vi

any two goods: 3vi

any three (or more) goods: 5vi

Rules:

auctioneer moves from one good to the next sequentially,
holding an English auction for each good.
bidding stops on a good: move on to the next good
no bids for any of the 9 goods: end the auction
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Combinatorial auctions

running a simultaneous ascending auction is inefficient
exposure problem
inefficiency due to fear of exposure

if we want an efficient outcome, why not just run VCG?
unfortunately, it again requires solving an NP-complete
problem
let there be n goods, m bids, sets Cj of XOR bids
weighted set packing problem:

max
m∑

i=1

xipi

subject to
∑

i|g∈Si

xi ≤ 1 ∀g

xi ∈ {0, 1} ∀i∑
k∈Cj

xk ≤ 1 ∀j
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Combinatorial auctions

max
m∑

i=1

xipi

subject to
∑

i|g∈Si

xi ≤ 1 ∀g

xi ∈ {0, 1} ∀i∑
k∈Cj

xk ≤ 1 ∀j

we don’t need the XOR constraints
instead, we can introduce “dummy goods” that don’t
correspond to goods in the auction, but that enforce XOR
constraints.
amounts to exactly the same thing: the first constraint has the
same form as the third
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Winner determination problem

How do we deal with the computational complexity of the winner
determination problem?

Require bids to come from a restricted set, guaranteeing that
the WDP can be solved in polynomial time

problem: these restricted sets are very restricted...

Use heuristic methods to solve the problem

this works pretty well in practice, making it possible to solve
WDPs with many hundreds of goods and thousands of bids.
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Expressing a bid in combinatorial auctions: OR bidding

Atomic bid: (S, p) means v(S) = p

implicitly, an “AND” of the singletons in S

OR bid: combine atomic bids

let v1, v2 be arbitrary valuations

(v1 ∨ v2)(S) = max
R, T ⊆ S
R ∪ T = ∅

[v1(R) + v2(S)]

Theorem

OR bids can express all valuations that do not have any
substitutability, and only these valuations.
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XOR Bids

XOR bidding: allow substitutabilities
(v1XORv2)(S) = max(v1(S), v2(S))

Theorem

XOR bids can represent any valuation

this isn’t really surprising, since we can enumerate valuations

however, this implies that they don’t represent everything
efficiently

Theorem

Additive valuations require linear space with OR, exponential space
with XOR

likewise with many other valuations: any in which the price is
different for every bundle
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Composite Bidding Languages

OR-of-XOR

sets of XOR bids, where the bidder is willing to get either one
or zero from each set

(. . . XOR . . .XOR . . .)OR(. . .)OR(. . .)

Theorem

Any downward sloping valuation can be represented using the
OR-of-XOR language using at most m2 atomic bids.

XOR-of-OR

a set of OR atomic bids, where the bidder is willing to select
from only one of these sets

generalized OR/XOR

arbitrary nesting of OR and XOR
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The OR* Language

OR*

OR, but uses dummy goods to simulate XOR constraints

Theorem

OR-of-XOR size k ⇒ OR* size k, ≤ k dummy goods

Theorem

Generalized OR/XOR size k ⇒ OR* size k, ≤ k2 dummy goods

Corollary

XOR-of-OR size k ⇒ OR* size k, ≤ k2 dummy goods
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Advanced topics in combinatorial auctions

iterative combinatorial auction mechanisms

reduce the amount bidders have to disclose / communication
complexity
allow bidders to learn about each others’ valuations: e.g.,
affiliated values

non-VCG mechanisms for restricted valuation classes

these can rely on polynomial-time winner determination
algorithms
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