
Recap First-Price Revenue Equivalence

Auction Theory II

Lecture 19

Auction Theory II Lecture 19, Slide 1



Recap First-Price Revenue Equivalence

Lecture Overview

1 Recap

2 First-Price Auctions

3 Revenue Equivalence

Auction Theory II Lecture 19, Slide 2



Recap First-Price Revenue Equivalence

Motivation

Auctions are any mechanisms for allocating resources among
self-interested agents

resource allocation is a fundamental problem in CS

increasing importance of studying distributed systems with
heterogeneous agents

currency needn’t be real money, just something scarce

Auction Theory II Lecture 19, Slide 3



Recap First-Price Revenue Equivalence

Intuitive comparison of 5 auctions

Intuitive Comparison of 5 auctions

• How should agents bid in these auctions?

 English Dutch Japanese 1st-Price 2nd-Price 

Duration #bidders, 
increment 

starting 
price, clock 

speed 

#bidders, 
increment 

fixed fixed 

Info 
Revealed 

2nd-highest 
val; bounds 
on others 

winner’s 
bid 

all val’s but 
winner’s 

none none 

Jump bids yes n/a no n/a n/a 

Price 
Discovery 

yes no yes no no 

Regret no yes no yes no 

 

Fill in “regret” after 
the fun game
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Second-Price proof

Theorem

Truth-telling is a dominant strategy in a second-price auction.

Proof.

Assume that the other bidders bid in some arbitrary way. We must
show that i’s best response is always to bid truthfully. We’ll break
the proof into two cases:

1 Bidding honestly, i would win the auction

2 Bidding honestly, i would lose the auction
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English and Japanese auctions

A much more complicated strategy space

extensive form game
bidders are able to condition their bids on information revealed
by others
in the case of English auctions, the ability to place jump bids

intuitively, though, the revealed information doesn’t make any
difference in the IPV setting.

Theorem

Under the independent private values model (IPV), it is a
dominant strategy for bidders to bid up to (and not beyond) their
valuations in both Japanese and English auctions.
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First-Price and Dutch

Theorem

First-Price and Dutch auctions are strategically equivalent.

In both first-price and Dutch, a bidder must decide on the
amount he’s willing to pay, conditional on having placed the
highest bid.

despite the fact that Dutch auctions are extensive-form games,
the only thing a winning bidder knows about the others is that
all of them have decided on lower bids

e.g., he does not know what these bids are
this is exactly the thing that a bidder in a first-price auction
assumes when placing his bid anyway.

Note that this is a stronger result than the connection
between second-price and English.

Auction Theory II Lecture 19, Slide 8



Recap First-Price Revenue Equivalence

Discussion

So, why are both auction types held in practice?

First-price auctions can be held asynchronously
Dutch auctions are fast, and require minimal communication:
only one bit needs to be transmitted from the bidders to the
auctioneer.

How should bidders bid in these auctions?

They should clearly bid less than their valuations.
There’s a tradeoff between:

probability of winning
amount paid upon winning

Bidders don’t have a dominant strategy any more.
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Analysis

Theorem

In a first-price auction with two risk-neutral bidders whose valuations are drawn
independently and uniformly at random from [0, 1], ( 1

2
v1,

1
2
v2) is a Bayes-Nash

equilibrium strategy profile.

Proof.

Assume that bidder 2 bids 1
2
v2, and bidder 1 bids s1. From the fact that v2

was drawn from a uniform distribution, all values of v2 between 0 and 1 are
equally likely. Bidder 1’s expected utility is

E[u1] =

∫ 1

0

u1dv2. (1)

Note that the integral in Equation (1) can be broken up into two smaller
integrals that differ on whether or not player 1 wins the auction.

E[u1] =

∫ 2s1

0

u1dv2 +

∫ 1

2s1

u1dv2
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Analysis

Theorem

In a first-price auction with two risk-neutral bidders whose valuations are drawn
independently and uniformly at random from [0, 1], ( 1

2
v1,

1
2
v2) is a Bayes-Nash

equilibrium strategy profile.

Proof (continued).

We can now substitute in values for u1. In the first case, because 2 bids 1
2
v2, 1

wins when v2 < 2s1, and gains utility v1 − s1. In the second case 1 loses and
gains utility 0. Observe that we can ignore the case where the agents have the
same valuation, because this occurs with probability zero.

E[u1] =

∫ 2s1

0

(v1 − s1)dv2 +

∫ 1

2s1

(0)dv2

= (v1 − s1)v2

∣∣∣∣2s1

0

= 2v1s1 − 2s2
1 (2)
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Analysis

Theorem

In a first-price auction with two risk-neutral bidders whose valuations are drawn
independently and uniformly at random from [0, 1], ( 1

2
v1,

1
2
v2) is a Bayes-Nash

equilibrium strategy profile.

Proof (continued).

We can find bidder 1’s best response to bidder 2’s strategy by taking the
derivative of Equation (2) and setting it equal to zero:

∂

∂s1
(2v1s1 − 2s2

1) = 0

2v1 − 4s1 = 0

s1 =
1

2
v1

Thus when player 2 is bidding half her valuation, player 1’s best strategy is to
bid half his valuation. The calculation of the optimal bid for player 2 is
analogous, given the symmetry of the game and the equilibrium.
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More than two bidders

Very narrow result: two bidders, uniform valuations.
Still, first-price auctions are not incentive compatible

hence, unsurprisingly, not equivalent to second-price auctions

Theorem

In a first-price sealed bid auction with n risk-neutral agents whose
valuations are independently drawn from a uniform distribution on
the same bounded interval of the real numbers, the unique
symmetric equilibrium is given by the strategy profile
(n−1

n v1, . . . ,
n−1

n vn).

proven using a similar argument, but more involved calculus
a broader problem: that proof only showed how to verify an
equilibrium strategy.

How do we identify one in the first place?

Auction Theory II Lecture 19, Slide 11



Recap First-Price Revenue Equivalence

Lecture Overview

1 Recap

2 First-Price Auctions

3 Revenue Equivalence

Auction Theory II Lecture 19, Slide 12



Recap First-Price Revenue Equivalence

Revenue Equivalence

Which auction should an auctioneer choose? To some extent,
it doesn’t matter...

Theorem (Revenue Equivalence Theorem)

Assume that each of n risk-neutral agents has an independent
private valuation for a single good at auction, drawn from a
common cumulative distribution F (v) that is strictly increasing
and atomless on [v, v̄]. Then any auction mechanism in which

the good will be allocated to the agent with the highest
valuation; and

any agent with valuation v has an expected utility of zero;

yields the same expected revenue, and hence results in any bidder
with valuation v making the same expected payment.

Auction Theory II Lecture 19, Slide 13



Recap First-Price Revenue Equivalence

Revenue Equivalence Proof

Proof.
Consider any mechanism (direct or indirect) for allocating the good. Let ui(v̂)
be i’s expected utility and let pi(v̂) be i’s probability of being awarded the
good, in equilibrium of the mechanism if he follows the equilibrium strategy for
an agent with type v̂ and this were in fact his type.

ui(vi) = vipi(vi)− E[payment by type vi of player i] (1)

From the definition of equilibrium,

ui(vi) ≥ ui(v̂) + (vi − v̂)pi(v̂) (2)

By behaving according to the equilibrium strategy for a player of type v̂, i
makes all the same payments and wins the good with the same probability as
an agent of type v̂. Because an agent of type vi values the good (vi − v̂) more
than an agent of type v̂ does, we must add this term. The inequality holds
because this deviation must be unprofitable. Consider v̂ = vi + dvi, by
substituting this expression into Equation (2):

ui(vi) ≥ ui(vi + dvi) + dvipi(vi + dvi) (3)
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Revenue Equivalence Proof

Proof (continued).

Likewise, considering the possibility that i’s true type could be vi + dvi,

ui(vi + dvi) ≥ ui(vi) + dvipi(vi) (4)

Combining Equations (3) and (4), we have

pi(vi + dvi) ≥
ui(vi + dvi)− ui(vi)

dvi
≥ pi(vi) (5)

Taking the limit as dvi → 0 gives

dui

dvi
= pi(vi) (6)

Integrating up,

ui(vi) = ui(v) +

∫ vi

x=v

pi(x)dx (7)
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Revenue Equivalence Proof

Proof (continued).

Now consider any two mechanisms which satisfy the conditions given in the
statement of the theorem. A bidder with valuation v will never win (since the
distribution is atomless), so his expected utility ui(v) = 0. Every agent i has
the same pi(vi) (his probability of winning given his type vi) under the two
mechanisms, regardless of his type. These mechanisms must then also have the
same ui functions, by Equation (7). From Equation (1), this means that a
player of any given type vi must make the same expected payment in both
mechanisms. Thus, i’s ex-ante expected payment is also the same in both
mechanisms. Since this is true for all i, the auctioneer’s expected revenue is
also the same in both mechanisms.
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First and Second-Price Auctions

The kth order statistic of a distribution: the expected value of
the kth-largest of n draws.

For n IID draws from [0, vmax], the kth order statistic is

n + 1− k

n + 1
vmax.

Thus in a second-price auction, the seller’s expected revenue is

n− 1
n + 1

vmax.

First and second-price auctions satisfy the requirements of the
revenue equivalence theorem

every symmetric game has a symmetric equilibrium
in a symmetric equilibrium of this auction game, higher bid ⇔
higher valuation
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Applying Revenue Equivalence

Thus, a bidder in a FPA must bid his expected payment
conditional on being the winner of a second-price auction

this conditioning will be correct if he does win the FPA;
otherwise, his bid doesn’t matter anyway
if vi is the high value, there are then n− 1 other values drawn
from the uniform distribution on [0, vi]
thus, the expected value of the second-highest bid is the
first-order statistic of n− 1 draws from [0, vi]:

n + 1− k

n + 1
vmax =

(n− 1) + 1− (1)
(n− 1) + 1

(vi) =
n− 1

n
vi

This provides a basis for our earlier claim about n-bidder
first-price auctions.

However, we’d still have to check that this is an equilibrium
The revenue equivalence theorem doesn’t say that every
revenue-equivalent strategy profile is an equilibrium!
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