Auction Theory II

Lecture 19

Auction Theory II

≣। ≣ •ी ९ (Lecture 19, Slide 1

・ロン ・四と ・ヨン ・ヨン

Lecture Overview

2 First-Price Auctions

æ

回 と く ヨ と く ヨ と

Motivation

- Auctions are any mechanisms for allocating resources among self-interested agents
- resource allocation is a fundamental problem in CS
- increasing importance of studying distributed systems with heterogeneous agents
- currency needn't be real money, just something scarce

Intuitive comparison of 5 auctions

	English	Dutch	Japanese	1 st -Price	2 nd -Price
Duration	#bidders, increment	starting price, clock speed	#bidders, increment	fixed	fixed
Info Revealed	2 nd -highest val; bounds	winner's bid	all val's but winner's	none	none
Jump bids	on others yes	n/a	no	n/a	n/a
Price Discovery	yes	no	yes	no	no
Regret	no	yes	no	yes	no

イロト イヨト イヨト イヨト

Second-Price proof

Theorem

Truth-telling is a dominant strategy in a second-price auction.

Proof.

Assume that the other bidders bid in some arbitrary way. We must show that i's best response is always to bid truthfully. We'll break the proof into two cases:

- \bigcirc Bidding honestly, *i* would win the auction
- 2 Bidding honestly, *i* would lose the auction

English and Japanese auctions

- A much more complicated strategy space
 - extensive form game
 - bidders are able to condition their bids on information revealed by others
 - in the case of English auctions, the ability to place jump bids
- intuitively, though, the revealed information doesn't make any difference in the IPV setting.

English and Japanese auctions

- A much more complicated strategy space
 - extensive form game
 - bidders are able to condition their bids on information revealed by others
 - in the case of English auctions, the ability to place jump bids
- intuitively, though, the revealed information doesn't make any difference in the IPV setting.

Theorem

Under the independent private values model (IPV), it is a dominant strategy for bidders to bid up to (and not beyond) their valuations in both Japanese and English auctions.

Lecture Overview

回 と く ヨ と く ヨ と

Auction Theory II

First-Price and Dutch

Theorem

First-Price and Dutch auctions are strategically equivalent.

- In both first-price and Dutch, a bidder must decide on the amount he's willing to pay, conditional on having placed the highest bid.
 - despite the fact that Dutch auctions are extensive-form games, the only thing a winning bidder knows about the others is that all of them have decided on lower bids
 - e.g., he does not know *what* these bids are
 - this is exactly the thing that a bidder in a first-price auction assumes when placing his bid anyway.
- Note that this is a stronger result than the connection between second-price and English.

→ Ξ →

Discussion

- So, why are both auction types held in practice?
 - First-price auctions can be held asynchronously
 - Dutch auctions are fast, and require minimal communication: only one bit needs to be transmitted from the bidders to the auctioneer.
- How should bidders bid in these auctions?

Discussion

- So, why are both auction types held in practice?
 - First-price auctions can be held asynchronously
 - Dutch auctions are fast, and require minimal communication: only one bit needs to be transmitted from the bidders to the auctioneer.
- How should bidders bid in these auctions?
 - They should clearly bid less than their valuations.
 - There's a tradeoff between:
 - probability of winning
 - amount paid upon winning
 - Bidders don't have a dominant strategy any more.

Analysis

Theorem

In a first-price auction with two risk-neutral bidders whose valuations are drawn independently and uniformly at random from [0,1], $(\frac{1}{2}v_1, \frac{1}{2}v_2)$ is a Bayes-Nash equilibrium strategy profile.

Proof.

Assume that bidder 2 bids $\frac{1}{2}v_2$, and bidder 1 bids s_1 . From the fact that v_2 was drawn from a uniform distribution, all values of v_2 between 0 and 1 are equally likely. Bidder 1's expected utility is

$$E[u_1] = \int_0^1 u_1 dv_2.$$
 (1)

Note that the integral in Equation (1) can be broken up into two smaller integrals that differ on whether or not player 1 wins the auction.

$$E[u_1] = \int_0^{2s_1} u_1 dv_2 + \int_{2s_1}^1 u_1 dv_2$$

Analysis

Theorem

In a first-price auction with two risk-neutral bidders whose valuations are drawn independently and uniformly at random from [0,1], $(\frac{1}{2}v_1, \frac{1}{2}v_2)$ is a Bayes-Nash equilibrium strategy profile.

Proof (continued).

We can now substitute in values for u_1 . In the first case, because 2 bids $\frac{1}{2}v_2$, 1 wins when $v_2 < 2s_1$, and gains utility $v_1 - s_1$. In the second case 1 loses and gains utility 0. Observe that we can ignore the case where the agents have the same valuation, because this occurs with probability zero.

$$E[u_1] = \int_0^{2s_1} (v_1 - s_1) dv_2 + \int_{2s_1}^1 (0) dv_2$$
$$= (v_1 - s_1) v_2 \Big|_0^{2s_1}$$
$$= 2v_1 s_1 - 2s_1^2$$

(2)

Analysis

Theorem

In a first-price auction with two risk-neutral bidders whose valuations are drawn independently and uniformly at random from [0,1], $(\frac{1}{2}v_1, \frac{1}{2}v_2)$ is a Bayes-Nash equilibrium strategy profile.

Proof (continued).

We can find bidder 1's best response to bidder 2's strategy by taking the derivative of Equation (2) and setting it equal to zero:

$$\frac{\partial}{\partial s_1}(2v_1s_1 - 2s_1^2) = 0$$
$$2v_1 - 4s_1 = 0$$
$$s_1 = \frac{1}{2}v$$

Thus when player 2 is bidding half her valuation, player 1's best strategy is to bid half his valuation. The calculation of the optimal bid for player 2 is analogous, given the symmetry of the game and the equilibrium.

Auction Theory II

Lecture 19, Slide 10

More than two bidders

- Very narrow result: two bidders, uniform valuations.
- Still, first-price auctions are not incentive compatible
 - hence, unsurprisingly, not equivalent to second-price auctions

Theorem

In a first-price sealed bid auction with n risk-neutral agents whose valuations are independently drawn from a uniform distribution on the same bounded interval of the real numbers, the unique symmetric equilibrium is given by the strategy profile $\left(\frac{n-1}{n}v_1,\ldots,\frac{n-1}{n}v_n\right)$.

- proven using a similar argument, but more involved calculus
- a broader problem: that proof only showed how to *verify* an equilibrium strategy.
 - How do we identify one in the first place?

Lecture Overview

2 First-Price Auctions

< ∃⇒

Revenue Equivalence

• Which auction should an auctioneer choose? To some extent, it doesn't matter...

Theorem (Revenue Equivalence Theorem)

Assume that each of n risk-neutral agents has an independent private valuation for a single good at auction, drawn from a common cumulative distribution F(v) that is strictly increasing and atomless on $[\underline{v}, \overline{v}]$. Then any auction mechanism in which

• the good will be allocated to the agent with the highest valuation; and

• any agent with valuation \underline{v} has an expected utility of zero; yields the same expected revenue, and hence results in any bidder with valuation v making the same expected payment.

・ 同 ト ・ ヨ ト ・ ヨ ト

Revenue Equivalence Proof

Proof.

Consider any mechanism (direct or indirect) for allocating the good. Let $u_i(\hat{v})$ be *i*'s expected utility and let $p_i(\hat{v})$ be *i*'s probability of being awarded the good, in equilibrium of the mechanism if he follows the equilibrium strategy for an agent with type \hat{v} and this were in fact his type.

$$u_i(v_i) = v_i p_i(v_i) - E[\text{payment by type } v_i \text{ of player } i]$$
 (1)

From the definition of equilibrium,

$$u_i(v_i) \ge u_i(\hat{v}) + (v_i - \hat{v})p_i(\hat{v}) \tag{2}$$

By behaving according to the equilibrium strategy for a player of type \hat{v} , i makes all the same payments and wins the good with the same probability as an agent of type \hat{v} . Because an agent of type v_i values the good $(v_i - \hat{v})$ more than an agent of type \hat{v} does, we must add this term. The inequality holds because this deviation must be unprofitable. Consider $\hat{v} = v_i + dv_i$, by substituting this expression into Equation (2):

$$u_i(v_i) \ge u_i(v_i + dv_i) + dv_i p_i(v_i + d_v i)$$

Revenue Equivalence Proof

Proof (continued).

Likewise, considering the possibility that i's true type could be $v_i + dv_i$,

$$u_i(v_i + dv_i) \ge u_i(v_i) + dv_i p_i(v_i)$$
(4)

Combining Equations (3) and (4), we have

$$p_i(v_i + dv_i) \ge \frac{u_i(v_i + dv_i) - u_i(v_i)}{dv_i} \ge p_i(v_i)$$
(5)

Taking the limit as $dv_i \rightarrow 0$ gives

$$\frac{du_i}{dv_i} = p_i(v_i) \tag{6}$$

Integrating up,

$$u_i(v_i) = u_i(\underline{v}) + \int_{x=\underline{v}}^{v_i} p_i(x) dx$$
(7)

Revenue Equivalence Proof

Proof (continued).

Now consider any two mechanisms which satisfy the conditions given in the statement of the theorem. A bidder with valuation \underline{v} will never win (since the distribution is atomless), so his expected utility $u_i(\underline{v}) = 0$. Every agent *i* has the same $p_i(v_i)$ (his probability of winning given his type v_i) under the two mechanisms, regardless of his type. These mechanisms must then also have the same u_i functions, by Equation (7). From Equation (1), this means that a player of any given type v_i must make the same expected payment in both mechanisms. Thus, *i*'s *ex-ante* expected payment is also the same in both mechanisms. Since this is true for all *i*, the auctioneer's expected revenue is also the same in both mechanisms.

First-Price

First and Second-Price Auctions

- The k^{th} order statistic of a distribution: the expected value of the k^{th} -largest of n draws.
- For n IID draws from $[0, v_{max}]$, the k^{th} order statistic is

$$\frac{n+1-k}{n+1}v_{max}.$$

First-Price

First and Second-Price Auctions

- The kth order statistic of a distribution: the expected value of the kth-largest of n draws.
- For n IID draws from $[0, v_{max}]$, the k^{th} order statistic is

$$\frac{n+1-k}{n+1}v_{max}.$$

• Thus in a second-price auction, the seller's expected revenue is

$$\frac{n-1}{n+1}v_{max}.$$

Auction Theory II

First-Price

First and Second-Price Auctions

- The k^{th} order statistic of a distribution: the expected value of the k^{th} -largest of n draws.
- For $n \ {\rm IID}$ draws from $[0, v_{max}],$ the $k^{\rm th}$ order statistic is

$$\frac{n+1-k}{n+1}v_{max}.$$

• Thus in a second-price auction, the seller's expected revenue is

$$\frac{n-1}{n+1}v_{max}.$$

- First and second-price auctions satisfy the requirements of the revenue equivalence theorem
 - every symmetric game has a symmetric equilibrium
 - in a symmetric equilibrium of this auction game, higher bid ⇔ higher valuation

Applying Revenue Equivalence

- Thus, a bidder in a FPA must bid his expected payment conditional on being the winner of a second-price auction
 - this conditioning will be correct if he does win the FPA; otherwise, his bid doesn't matter anyway
 - if v_i is the high value, there are then n-1 other values drawn from the uniform distribution on $[0, v_i]$
 - thus, the expected value of the second-highest bid is the first-order statistic of n-1 draws from $[0, v_i]$:

$$\frac{n+1-k}{n+1}v_{max} = \frac{(n-1)+1-(1)}{(n-1)+1}(v_i) = \frac{n-1}{n}v_i$$

- This provides a basis for our earlier claim about *n*-bidder first-price auctions.
 - However, we'd still have to check that this is an equilibrium
 - The revenue equivalence theorem doesn't say that every revenue-equivalent strategy profile is an equilibrium!

< 注 → < 注 → □ 注