Quasilinear Mechanisms; Groves Mechanism

Lecture 15

Quasilinear Mechanisms; Groves Mechanism

Lecture 15, Slide 1

-

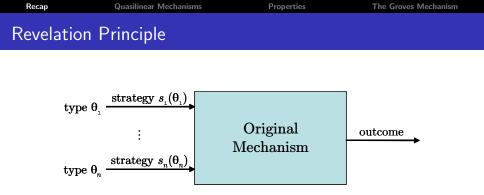
A 1

Lecture Overview

2 Quasilinear Mechanisms

Quasilinear Mechanisms; Groves Mechanism

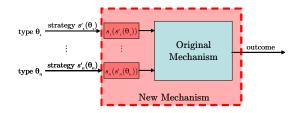
回 と く ヨ と く ヨ と



- It turns out that truthfulness can always be achieved!
- Consider an arbitrary, non-truthful mechanism (e.g., may be indirect)
- Recall that a mechanism defines a game, and consider an equilibrium $s=(s_1,\ldots,s_n)$

< 臣 ▶ < 臣 ▶ …

Revelation Principle



- We can construct a new direct mechanism, as shown above
- This mechanism is truthful by exactly the same argument that s was an equilibrium in the original mechanism
- "The agents don't have to lie, because the mechanism already lies for them."

Impossibility Result

Theorem (Gibbard-Satterthwaite)

Consider any social choice function C of N and O. If:

- **1** $|O| \ge 3$ (there are at least three outcomes);
- C is onto; that is, for every o ∈ O there is a preference profile
 [≻] such that C([≻]) = o (this property is sometimes also called citizen sovereignty); and
- 3 C is dominant-strategy truthful,

then C is dictatorial.

(문) (문) (

Quasilinear Utility

Definition (Quasilinear preferences)

Agents have quasilinear preferences in an n-player Bayesian game when the set of outcomes is

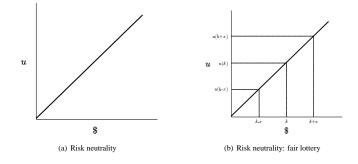
$$O = X \times \mathbb{R}^n$$

for a finite set X, and the utility of an agent i given joint type θ is given by

$$u_i(o,\theta) = u_i(x,\theta) - f_i(p_i),$$

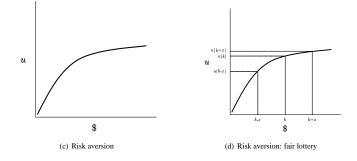
where o = (x, p) is an element of O, $u_i : X \times \Theta \mapsto \mathbb{R}$ is an arbitrary function and $f_i : \mathbb{R} \mapsto \mathbb{R}$ is a strictly monotonically increasing function.

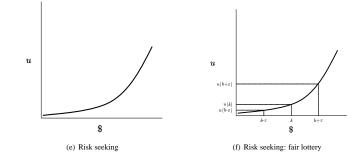
Risk Neutrality



・ロト ・回ト ・ヨト ・ヨト

Risk Aversion





・ロト ・回ト ・ヨト ・ヨト

Lecture Overview

Quasilinear Mechanisms

< ≣ >

A ₽

< ≣⇒

Quasilinear Mechanism

Definition (Quasilinear mechanism)

A mechanism in the quasilinear setting (for a Bayesian game setting $(N, O = X \times \mathbb{R}^n, \Theta, p, u)$) is a triple (A, χ, p) , where

- $A = A_1 \times \cdots \times A_n$, where A_i is the set of actions available to agent $i \in N$,
- $\chi: A \mapsto \Pi(X)$ maps each action profile to a distribution over choices, and
- $p: A \mapsto \mathbb{R}^n$ maps each action profile to a payment for each agent.

· < @ > < 글 > < 글 > · · 글

Direct Quasilinear Mechanism

Definition (Direct quasilinear mechanism)

A direct quasilinear mechanism (for a Bayesian game setting $(N, O = X \times \mathbb{R}^n, \Theta, p, u)$) is a pair (χ, p) . It defines a standard mechanism in the quasilinear setting, where for each i, $A_i = \Theta_i$.

Definition (Conditional utility independence)

A Bayesian game exhibits conditional utility independence if for all agents $i \in N$, for all outcomes $o \in O$ and for all pairs of joint types θ and $\theta' \in \Theta$ for which $\theta_i = \theta'_i$, it holds that $u_i(o, \theta) = u_i(o, \theta')$.

イロン イ団 とくほと くほとう

Quasilinear Mechanisms with Conditional Utility Independence

- \bullet Given conditional utility independence, we can write i 's utility function as $u_i(o,\theta_i)$
 - it does not depend on the other agents' types
- An agent's valuation for choice $x \in X$: $v_i(x) = u_i(x, \theta_i)$
 - ${\ensuremath{\, \bullet }}$ the maximum amount i would be willing to pay to get x
 - in fact, i would be indifferent between keeping the money and getting \boldsymbol{x}
- Alternate definition of direct mechanism:
 - ask agents i to declare $v_i(x)$ for each $x \in X$
- Define \hat{v}_i as the valuation that agent i declares to such a direct mechanism
 - ${\ensuremath{\, \bullet }}$ may be different from his true valuation v_i
- Also define the tuples $\hat{v}\text{, }\hat{v}_{-i}$

イロン イヨン イヨン イヨン

Lecture Overview

Quasilinear Mechanisms: Groves Mechanism

< ≣⇒

A ■ < ∃ >

Truthfulness

Definition (Truthfulness)

A quasilinear mechanism is truthful if it is direct and $\forall i \forall v_i$, agent *i*'s equilibrium strategy is to adopt the strategy $\hat{v}_i = v_i$.

• Our definition before, adapted for the quasilinear setting

Recap	Quasilinear Mechanisms	Properties	The Groves Mechanism
Efficiency			

Definition (Efficiency)

A quasilinear mechanism is strictly Pareto efficient, or just efficient, if in equilibrium it selects a choice x such that

$$\forall v \forall x', \sum_{i} v_i(x) \ge \sum_{i} v_i(x').$$

- An efficient mechanism selects the choice that maximizes the sum of agents' utilities, disregarding monetary payments.
- How is this related to Pareto efficiency from GT?

Recap	Quasilinear Mechanisms	Properties	The Groves Mechanism
Efficiency			

Definition (Efficiency)

A quasilinear mechanism is strictly Pareto efficient, or just efficient, if in equilibrium it selects a choice x such that

$$\forall v \forall x', \sum_{i} v_i(x) \ge \sum_{i} v_i(x').$$

- An efficient mechanism selects the choice that maximizes the sum of agents' utilities, disregarding monetary payments.
- How is this related to Pareto efficiency from GT?
 - if we include the mechanism as an agent, all Pareto-efficient outcomes involve the same choice (and different payments)
 - any outcome involving another choice is Pareto-dominated: some agents could make a side-payment to others such that all would prefer the swap

Definition (Efficiency)

A quasilinear mechanism is strictly Pareto efficient, or just efficient, if in equilibrium it selects a choice x such that

$$\forall v \forall x', \sum_{i} v_i(x) \ge \sum_{i} v_i(x').$$

- Called economic efficiency to distinguish from other (e.g., computational) notions
- Also called social-welfare maximization
- Note: defined in terms of true (not declared) valuations.

글 에 에 글 어

Budget Balance

Definition (Budget balance)

A quasilinear mechanism is budget balanced when

$$\forall v, \sum_{i} p_i(s(v)) = 0,$$

where \boldsymbol{s} is the equilibrium strategy profile.

 regardless of the agents' types, the mechanism collects and disburses the same amount of money from and to the agents

Budget Balance

Definition (Budget balance)

A quasilinear mechanism is budget balanced when

$$\forall v, \sum_{i} p_i(s(v)) = 0,$$

where s is the equilibrium strategy profile.

- regardless of the agents' types, the mechanism collects and disburses the same amount of money from and to the agents
- relaxed version: weak budget balance:

$$\forall v, \sum_{i} p_i(s(v)) \ge 0$$

• the mechanism never takes a loss, but it may make a profit

Budget Balance

Definition (Budget balance)

A quasilinear mechanism is **budget balanced** when

$$\forall v, \sum_{i} p_i(s(v)) = 0,$$

where s is the equilibrium strategy profile.

- regardless of the agents' types, the mechanism collects and disburses the same amount of money from and to the agents
- Budget balance can be required to hold *ex ante*:

$$\mathbb{E}_v \sum_i p_i(s(v)) = 0$$

• the mechanism must break even or make a profit only on expectation

Individual-Rationality

Definition (*Ex interim* individual rationality)

A mechanism is ex interim individual rational when $\forall i \forall v_i, \mathbb{E}_{v_{-i}|v_i} v_i(\chi(s_i(v_i), s_{-i}(v_{-i}))) - p_i(s_i(v_i), s_{-i}(v_{-i})) \ge 0,$ where s is the equilibrium strategy profile.

- no agent loses by participating in the mechanism.
- *ex interim* because it holds for *every* possible valuation for agent *i*, but averages over the possible valuations of the other agents.

Individual-Rationality

Definition (*Ex interim* individual rationality)

A mechanism is ex interim individual rational when $\forall i \forall v_i, \mathbb{E}_{v_{-i}|v_i} v_i(\chi(s_i(v_i), s_{-i}(v_{-i}))) - p_i(s_i(v_i), s_{-i}(v_{-i})) \ge 0,$ where s is the equilibrium strategy profile.

- no agent loses by participating in the mechanism.
- *ex interim* because it holds for *every* possible valuation for agent *i*, but averages over the possible valuations of the other agents.

Definition (*Ex post* individual rationality)

A mechanism is expost individual rational when $\forall i \forall v, v_i(\chi(s(v))) - p_i(s(v)) \ge 0$, where s is the equilibrium strategy profile.

Tractability

Definition (Tractability)

A mechanism is tractable when $\forall \hat{v}, \chi(\hat{v})$ and $p(\hat{v})$ can be computed in polynomial time.

• The mechanism is computationally feasible.

Quasilinear Mechanisms; Groves Mechanism

Revenue Maximization

We can also add an objective function to our mechanism. One example: revenue maximization.

Definition (Revenue maximization)

A mechanism is revenue maximizing when, among the set of functions χ and p that satisfy the other constraints, the mechanism selects the χ and p that maximize $\mathbb{E}_{\theta} \sum_{i} p_{i}(s(\theta))$, where $s(\theta)$ denotes the agents' equilibrium strategy profile.

• The mechanism designer can choose among mechanisms that satisfy the desired constraints by adding an objective function such as revenue maximization.

★ E ► ★ E ► = E

Recap	Quasilinear Mechanisms	Properties	The Groves Mechanism
Revenue	Minimization		

- The mechanism may not be intended to make money.
- Budget balance may be impossible to satisfy.
- Set weak budget balance as a constraint and add the following objective.

Definition (Revenue minimization)

A quasilinear mechanism is revenue minimizing when, among the set of functions χ and p that satisfy the other constraints, the mechanism selects the χ and p that minimize $\max_v \sum_i p_i(s(v))$ in equilibrium, where s(v) denotes the agents' equilibrium strategy profile.

• Note: this considers the worst case over valuations; we could consider average case instead.

Recap	Quasilinear Mechanisms	Properties	The Groves Mechanism
Fairness			

- Fairness is hard to define. What is fairer:
 - an outcome that fines all agents \$100 and makes a choice that all agents hate equally?
 - an outcome that charges all agents \$0 and makes a choice that some agents hate and some agents like?

Recap	Quasilinear Mechanisms	Properties	The Groves Mechanism
Fairness			

- Fairness is hard to define. What is fairer:
 - an outcome that fines all agents \$100 and makes a choice that all agents hate equally?
 - an outcome that charges all agents \$0 and makes a choice that some agents hate and some agents like?
- Maxmin fairness: make the least-happy agent the happiest.

Definition (Maxmin fairness)

A quasilinear mechanism is maxmin fair when, among the set of functions χ and p that satisfy the other constraints, the mechanism selects the χ and p that maximize

$$\mathbb{E}_{v}\left[\min_{i\in N} v_{i}(\boldsymbol{\chi}(s(v))) - \boldsymbol{p}_{i}(s(v))\right]$$

where s(v) denotes the agents' equilibrium strategy profile.

Price of Anarchy Minimization

- When an efficient mechanism is impossible, we may want to get as close as possible
- Minimize the worst-case ratio between optimal social welfare and the social welfare achieved by the given mechanism.

Definition (Price-of-anarchy minimization)

A quasilinear mechanism minimizes the price of anarchy when, among the set of functions χ and p that satisfy the other constraints, the mechanism selects the χ and p that minimize

$$\max_{v \in V} \frac{\max_{x \in X} \sum_{i \in N} v_i(x)}{\sum_{i \in N} v_i\left(\chi(s(v))\right)},$$

where s(v) denotes the agents' equilibrium strategy profile in the *worst* equilibrium of the mechanism—i.e., the one in which $\sum_{i\in N} v_i(\chi(s(v)))$ is the smallest.

Lecture Overview

2 Quasilinear Mechanisms

Quasilinear Mechanisms; Groves Mechanism

< 注→ < 注→

A ₽

- Recall that in the quasilinear utility setting, a mechanism can be defined as a choice rule and a payment rule.
- The Groves mechanism is a mechanism that satisfies:
 - dominant strategy (truthfulness)
 - efficiency
- In general it's not:
 - budget balanced
 - individual-rational

 $\ldots though$ we'll see later that there's some hope for recovering these properties.

Definition (Groves mechanism)

The Groves mechanism is a direct quasilinear mechanism (χ, p) , where

$$\begin{aligned} \boldsymbol{\chi}(\hat{v}) &= \arg \max_{x} \sum_{i} \hat{v}_{i}(x) \\ p_{i}(\hat{v}) &= h_{i}(\hat{v}_{-i}) - \sum_{j \neq i} \hat{v}_{j}(\boldsymbol{\chi}(\hat{v})) \end{aligned}$$

Quasilinear Mechanisms; Groves Mechanism

3 ×

Recap	Quasilinear Mechanisms	Properties	The Groves Mechanism

$$\begin{split} \boldsymbol{\chi}(\hat{v}) &= \arg \max_{x} \sum_{i} \hat{v}_{i}(x) \\ \boldsymbol{p}_{i}(\hat{v}) &= h_{i}(\hat{v}_{-i}) - \sum_{j \neq i} \hat{v}_{j}(\boldsymbol{\chi}(\hat{v})) \end{split}$$

• The choice rule should not come as a surprise (why not?)

∢ ≣⇒

$$\begin{aligned} \boldsymbol{\chi}(\hat{v}) &= \arg \max_{x} \sum_{i} \hat{v}_{i}(x) \\ p_{i}(\hat{v}) &= h_{i}(\hat{v}_{-i}) - \sum_{j \neq i} \hat{v}_{j}(\boldsymbol{\chi}(\hat{v})) \end{aligned}$$

• The choice rule should not come as a surprise (why not?) because the mechanism is both truthful and efficient: these properties entail the given choice rule.

< ∃ >

$$\begin{aligned} \boldsymbol{\chi}(\hat{v}) &= \arg \max_{x} \sum_{i} \hat{v}_{i}(x) \\ \boldsymbol{p}_{i}(\hat{v}) &= h_{i}(\hat{v}_{-i}) - \sum_{j \neq i} \hat{v}_{j}(\boldsymbol{\chi}(\hat{v})) \end{aligned}$$

- The choice rule should not come as a surprise (why not?) because the mechanism is both truthful and efficient: these properties entail the given choice rule.
- So what's going on with the payment rule?
 - the agent i must pay some amount $h_i(\hat{v}_{-i})$ that doesn't depend on his own declared valuation
 - the agent i is paid $\sum_{j\neq i} \hat{v}_j(\chi(\hat{v}))$, the sum of the others' valuations for the chosen outcome

물 🖌 🗶 물 🛌 물

Groves Truthfulness

Theorem

Truth telling is a dominant strategy under the Groves mechanism.

Consider a situation where every agent j other than i follows some arbitrary strategy \hat{v}_j . Consider agent i's problem of choosing the best strategy \hat{v}_i . As a shorthand, we will write $\hat{v} = (\hat{v}_{-i}, \hat{v}_i)$. The best strategy for i is one that solves

 $\max_{\hat{v}_i} \left(v_i(\boldsymbol{\chi}(\hat{v})) - \boldsymbol{p}(\hat{v}) \right)$

Substituting in the payment function from the Groves mechanism, we have

$$\max_{\hat{v}_i} \left(v_i(\boldsymbol{\chi}(\hat{v})) - h_i(\hat{v}_{-i}) + \sum_{j \neq i} \hat{v}_j(\boldsymbol{\chi}(\hat{v})) \right)$$

Since $h_i(\hat{v}_{-i})$ does not depend on \hat{v}_i , it is sufficient to solve

$$\max_{\hat{v}_i} \left(v_i(\boldsymbol{\chi}(\hat{v})) + \sum_{j \neq i} \hat{v}_j(\boldsymbol{\chi}(\hat{v})) \right).$$

< 글 > < 글 > ... 글

Groves Truthfulness

$$\max_{\hat{v}_i} \left(v_i(\boldsymbol{\chi}(\hat{v})) + \sum_{j \neq i} \hat{v}_j(\boldsymbol{\chi}(\hat{v})) \right).$$

The only way the declaration \hat{v}_i influences this maximization is through the choice of x. If possible, i would like to pick a declaration \hat{v}_i that will lead the mechanism to pick an $x \in X$ which solves

$$\max_{x} \left(v_i(x) + \sum_{j \neq i} \hat{v}_j(x) \right).$$
(1)

Under the Groves mechanism,

$$\chi(\hat{v}) = \arg \max_{x} \left(\sum_{i} \hat{v}_{i}(x) \right) = \arg \max_{x} \left(\hat{v}_{i}(x) + \sum_{j \neq i} \hat{v}_{j}(x) \right).$$

The Groves mechanism will choose x in a way that solves the maximization problem in Equation (1) when i declares $\hat{v}_i = v_i$. Because this argument does not depend in any way on the declarations of the other agents, truth-telling is a dominant strategy for agent i.

Recap	Quasilinear Mechanisms	Properties	The Groves Mechanism
Proof int	uition		

- externalities are internalized
 - agents may be able to change the outcome to another one that they prefer, by changing their declaration
 - however, their utility doesn't just depend on the outcome—it also depends on their payment
 - since they get paid the (reported) utility of all the other agents under the chosen allocation, they now have an interest in maximizing everyone's utility rather than just their own
- in general, DS truthful mechanisms have the property that an agent's payment doesn't depend on the amount of his declaration, but only on the other agents' declarations
 - the agent's declaration is used only to choose the outcome, and to set other agents' payments

Groves Uniqueness

Theorem (Green–Laffont)

An efficient social choice function $C : \mathbb{R}^{Xn} \to X \times \mathbb{R}^n$ can be implemented in dominant strategies for agents with unrestricted quasilinear utilities only if $p_i(v) = h(v_{-i}) - \sum_{j \neq i} v_j(\chi(v))$.

 it turns out that the same result also holds for the broader class of Bayes–Nash incentive-compatible efficient mechanisms.