| Recap | Fun Game    | Properties        | Arrow's Theorem |
|-------|-------------|-------------------|-----------------|
|       |             |                   |                 |
|       |             |                   |                 |
|       |             |                   |                 |
|       |             |                   |                 |
|       |             |                   |                 |
|       |             |                   |                 |
|       | Arrow's Imp | ossibility Theore | n               |
|       |             |                   |                 |

Lecture 12

Arrow's Impossibility Theorem

Lecture 12, Slide 1

◆□> ◆□> ◆臣> ◆臣> 臣 の�?

## Lecture Overview









Lecture 12, Slide 2

æ

イロン イヨン イヨン イヨン

Arrow's Impossibility Theorem

### *Ex-post* expected utility

#### Definition (*Ex-post* expected utility)

Agent *i*'s *ex-post* expected utility in a Bayesian game  $(N, A, \Theta, p, u)$ , where the agents' strategies are given by s and the agent' types are given by  $\theta$ , is defined as

$$EU_i(s,\theta) = \sum_{a \in A} \left( \prod_{j \in N} s_j(a_j | \theta_j) \right) u_i(a,\theta).$$

• The only uncertainty here concerns the other agents' mixed strategies, since *i* knows everyone's type.

イロト イヨト イヨト イヨト

# *Ex-interim* expected utility

### Definition (*Ex-interim* expected utility)

Agent *i*'s *ex-interim* expected utility in a Bayesian game  $(N, A, \Theta, p, u)$ , where *i*'s type is  $\theta_i$  and where the agents' strategies are given by the mixed strategy profile s, is defined as

$$EU_i(s|\theta_i) = \sum_{\theta_{-i}\in\Theta_{-i}} p(\theta_{-i}|\theta_i) \sum_{a\in A} \left(\prod_{j\in N} s_j(a_j|\theta_j)\right) u_i(a,\theta_{-i},\theta_i).$$

- *i* must consider every  $\theta_{-i}$  and every *a* in order to evaluate  $u_i(a, \theta_i, \theta_{-i})$ .
- *i* must weight this utility value by:
  - $\bullet\,$  the probability that a would be realized given all players' mixed strategies and types;
  - the probability that the other players' types would be  $\theta_{-i}$  given that his own type is  $\theta_i$ .

| Recap             | Fun Game       | Properties | Arrow's Theorem |
|-------------------|----------------|------------|-----------------|
| <i>Ex-ante</i> ex | pected utility |            |                 |

#### Definition (*Ex-ante* expected utility)

Agent i's ex-ante expected utility in a Bayesian game  $(N,A,\Theta,p,u)$ , where the agents' strategies are given by the mixed strategy profile s, is defined as

$$EU_i(s) = \sum_{\theta_i \in \Theta_i} p(\theta_i) EU_i(s|\theta_i)$$

or equivalently as

$$EU_i(s) = \sum_{\theta \in \Theta} p(\theta) \sum_{a \in A} \left( \prod_{j \in N} s_j(a_j | \theta_j) \right) u_i(a, \theta).$$

# Nash equilibrium

#### Definition (Bayes-Nash equilibrium)

A Bayes-Nash equilibrium is a mixed strategy profile s that satisfies  $\forall i \ s_i \in BR_i(s_{-i})$ .

#### Definition (ex-post equilibrium)

A *ex-post* equilibrium is a mixed strategy profile s that satisfies  $\forall \theta, \forall i, s_i \in \arg \max_{s'_i \in S_i} EU_i(s'_i, s_{-i}, \theta).$ 

イロン イ部ン イヨン イヨン 三日

# Social Choice

#### Definition (Social choice function)

Assume a set of agents  $N = \{1, 2, ..., n\}$ , and a set of outcomes (or alternatives, or candidates) O. Let  $L_{-}$  be the set of non-strict total orders on O. A social choice function (over N and O) is a function  $C : L_{-}^{n} \mapsto O$ .

#### Definition (Social welfare function)

Let  $N, O, L_{-}$  be as above. A social welfare function (over N and O) is a function  $W: L_{-}^{n} \mapsto L_{-}$ .

◆□ > ◆□ > ◆三 > ◆三 > 三 の < ⊙

# Some Voting Schemes

- Plurality
  - pick the outcome which is preferred by the most people
- Plurality with elimination ("instant runoff")
  - everyone selects their favorite outcome
  - the outcome with the fewest votes is eliminated
  - repeat until one outcome remains
- Borda
  - assign each outcome a number.
  - The most preferred outcome gets a score of n-1, the next most preferred gets n-2, down to the  $n^{\rm th}$  outcome which gets 0.
  - Then sum the numbers for each outcome, and choose the one that has the highest score
- Pairwise elimination
  - in advance, decide a schedule for the order in which pairs will be compared.
  - given two outcomes, have everyone determine the one that they prefer

Recap Fun Game Properties Arrow's Theorem

# Condorcet Condition

- If there is a candidate who is preferred to every other candidate in pairwise runoffs, that candidate should be the winner
- While the Condorcet condition is considered an important property for a voting system to satisfy, there is not always a Condorcet winner
- sometimes, there's a cycle where A defeats B, B defeats C, and C defeats A in their pairwise runoffs

## Lecture Overview









Lecture 12, Slide 10

æ

イロト イヨト イヨト イヨト

Arrow's Impossibility Theorem

| Recap    | Fun Game | Properties | Arrow's Theorem |
|----------|----------|------------|-----------------|
| Fun Game |          |            |                 |

- Imagine that there was an opportunity to take a one-week class trip at the end of term, to one of the following destinations:
  - (0) Orlando, FL
  - (P) Paris, France
  - (T) Tehran, Iran
  - (B) Beijing, China
- Construct your preference ordering

| Recap    | Fun Game | Properties | Arrow's Theorem |
|----------|----------|------------|-----------------|
| Fun Game |          |            |                 |

- Imagine that there was an opportunity to take a one-week class trip at the end of term, to one of the following destinations:
  - (0) Orlando, FL
  - (P) Paris, France
  - (T) Tehran, Iran
  - (B) Beijing, China
- Construct your preference ordering
- Vote (truthfully) using each of the following schemes:
  - plurality (raise hands)

| Recap    | Fun Game | Properties | Arrow's Theorem |
|----------|----------|------------|-----------------|
| Fun Game |          |            |                 |

- Imagine that there was an opportunity to take a one-week class trip at the end of term, to one of the following destinations:
  - (0) Orlando, FL
  - (P) Paris, France
  - (T) Tehran, Iran
  - (B) Beijing, China
- Construct your preference ordering
- Vote (truthfully) using each of the following schemes:
  - plurality (raise hands)
  - plurality with elimination (raise hands)

| Recap    | Fun Game | Properties | Arrow's Theorem |
|----------|----------|------------|-----------------|
| Fun Game |          |            |                 |

- Imagine that there was an opportunity to take a one-week class trip at the end of term, to one of the following destinations:
  - (O) Orlando, FL
  - (P) Paris, France
  - (T) Tehran, Iran
  - (B) Beijing, China
- Construct your preference ordering
- Vote (truthfully) using each of the following schemes:
  - plurality (raise hands)
  - plurality with elimination (raise hands)
  - Borda (volunteer to tabulate)

| Recap    | Fun Game | Properties | Arrow's Theorem |
|----------|----------|------------|-----------------|
| Fun Game |          |            |                 |

- Imagine that there was an opportunity to take a one-week class trip at the end of term, to one of the following destinations:
  - (0) Orlando, FL
  - (P) Paris, France
  - (T) Tehran, Iran
  - (B) Beijing, China
- Construct your preference ordering
- Vote (truthfully) using each of the following schemes:
  - plurality (raise hands)
  - plurality with elimination (raise hands)
  - Borda (volunteer to tabulate)
  - pairwise elimination (raise hands, I'll pick a schedule)

- E + - E +

## Lecture Overview









Lecture 12, Slide 12

æ

< ≣⇒

A B >
A B >
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

< ≣ >

Arrow's Impossibility Theorem

| Recap    | Fun Game | Properties | Arrow's Theorem |
|----------|----------|------------|-----------------|
| Notation |          |            |                 |

- N is the set of agents
- O is a finite set of outcomes with  $|O|\geq 3$
- L is the set of all possible strict preference orderings over O.
  - for ease of exposition we switch to strict orderings
  - we will end up showing that desirable SWFs cannot be found even if preferences are restricted to strict orderings
- [≻] is an element of the set L<sup>n</sup> (a preference ordering for every agent; the input to our social welfare function)
- $\succ_W$  is the preference ordering selected by the social welfare function W.
  - When the input to W is ambiguous we write it in the subscript; thus, the social order selected by W given the input  $[\succ']$  is denoted as  $\succ_{W([\succ'])}$ .

| Recap    | Fun Game   | Properties | Arrow's Theorem |
|----------|------------|------------|-----------------|
| Pareto I | Efficiency |            |                 |
|          |            |            |                 |

#### Definition (Pareto Efficiency (PE))

W is Pareto efficient if for any  $o_1, o_2 \in O$ ,  $\forall i \ o_1 \succ_i o_2$  implies that  $o_1 \succ_W o_2$ .

• when all agents agree on the ordering of two outcomes, the social welfare function must select that ordering.

# Independence of Irrelevant Alternatives

### Definition (Independence of Irrelevant Alternatives (IIA))

W is independent of irrelevant alternatives if, for any  $o_1, o_2 \in O$ and any two preference profiles  $[\succ'], [\succ''] \in L^n$ ,  $\forall i (o_1 \succ'_i o_2)$  if and only if  $o_1 \succ''_i o_2$ ) implies that  $(o_1 \succ_{W([\succ'])} o_2)$  if and only if  $o_1 \succ_{W([\succ''])} o_2$ ).

• the selected ordering between two outcomes should depend only on the relative orderings they are given by the agents.

| Recap      | Fun Game | Properties | Arrow's Theorem |
|------------|----------|------------|-----------------|
| Nondictato | rship    |            |                 |
|            |          |            |                 |
|            |          |            |                 |

#### Definition (Non-dictatorship)

W does not have a dictator if  $\neg \exists i \forall o_1, o_2(o_1 \succ_i o_2 \Rightarrow o_1 \succ_W o_2)$ .

- there does not exist a single agent whose preferences always determine the social ordering.
- We say that W is dictatorial if it fails to satisfy this property.

Arrow's Theorem

# Lecture Overview









▶ < ≣ ▶ ≣ → 곗 < ( Lecture 12, Slide 17

イロト イヨト イヨト イヨト

Arrow's Impossibility Theorem

# Arrow's Theorem

### Theorem (Arrow, 1951)

Any social welfare function W that is Pareto efficient and independent of irrelevant alternatives is dictatorial.

We will assume that W is both PE and IIA, and show that W must be dictatorial. Our assumption that  $|O| \ge 3$  is necessary for this proof. The argument proceeds in four steps.

**Step 1:** If every voter puts an outcome b at either the very top or the very bottom of his preference list, b must be at either the very top or very bottom of  $\succ_W$  as well.

Consider an arbitrary preference profile  $[\succ]$  in which every voter ranks some  $b \in O$  at either the very bottom or very top, and assume for contradiction that the above claim is not true. Then, there must exist some pair of distinct outcomes  $a, c \in O$  for which  $a \succ_W b$  and  $b \succ_W c$ .

**Step 1:** If every voter puts an outcome b at either the very top or the very bottom of his preference list, b must be at either the very top or very bottom of  $\succ_W$  as well.

Now let's modify  $[\succ]$  so that every voter moves c just above a in his preference ranking, and otherwise leaves the ranking unchanged; let's call this new preference profile  $[\succ']$ . We know from IIA that for  $a \succ_W b$  or  $b \succ_W c$  to change, the pairwise relationship between a and b and/or the pairwise relationship between b and c would have to change. However, since b occupies an extremal position for all voters, c can be moved above a without changing either of these pairwise relationships. Thus in profile  $[\succ']$  it is also the case that  $a \succ_W b$  and  $b \succ_W c$ . From this fact and from transitivity, we have that  $a \succ_W c$ . However, in  $[\succ']$  every voter ranks cabove a and so PE requires that  $c \succ_W a$ . We have a contradiction.

(4回) (日) (日) (日) (日)

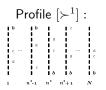
**Step 2:** There is some voter  $n^*$  who is extremely pivotal in the sense that by changing his vote at some profile, he can move a given outcome b from the bottom of the social ranking to the top.

Consider a preference profile  $[\succ]$  in which every voter ranks b last, and in which preferences are otherwise arbitrary. By PE, W must also rank b last. Now let voters from 1 to n successively modify  $[\succ]$  by moving b from the bottom of their rankings to the top, preserving all other relative rankings. Denote as  $n^*$  the first voter whose change causes the social ranking of b to change. There clearly must be some such voter: when the voter n moves b to the top of his ranking, PE will require that b be ranked at the top of the social ranking.

・ 回 と ・ ヨ と ・ ヨ と

**Step 2:** There is some voter  $n^*$  who is extremely pivotal in the sense that by changing his vote at some profile, he can move a given outcome b from the bottom of the social ranking to the top.

Denote by  $[\succ^1]$  the preference profile just before  $n^*$  moves b, and denote by  $[\succ^2]$  the preference profile just after  $n^*$  has moved b to the top of his ranking. In  $[\succ^1]$ , b is at the bottom in  $\succ_W$ . In  $[\succ^2]$ , b has changed its position in  $\succ_W$ , and every voter ranks b at either the top or the bottom. By the argument from Step 1, in  $[\succ^2]$  b must be ranked at the top of  $\succ_W$ .

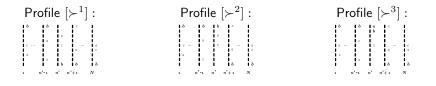


Profile  $[\succ^2]$ :  $\downarrow^b$   $\downarrow^b$   $\downarrow^c$   $\downarrow^c$ 

イロン イ部ン イヨン イヨン 三日

**Step 3:**  $n^*$  (the agent who is extremely pivotal on outcome b) is a dictator over any pair ac not involving b.

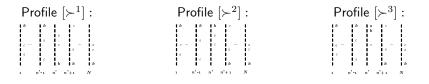
We begin by choosing one element from the pair ac; without loss of generality, let's choose a. We'll construct a new preference profile  $[\succ^3]$  from  $[\succ^2]$  by making two changes. First, we move a to the top of  $n^*$ 's preference ordering, leaving it otherwise unchanged; thus  $a \succ_{n^*} b \succ_{n^*} c$ . Second, we arbitrarily rearrange the relative rankings of a and c for all voters other than  $n^*$ , while leaving b in its extremal position.



イロン イヨン イヨン イヨン

**Step 3:**  $n^*$  (the agent who is extremely pivotal on outcome b) is a dictator over any pair ac not involving b.

In  $[\succ^1]$  we had  $a \succ_W b$ , as b was at the very bottom of  $\succ_W$ . When we compare  $[\succ^1]$  to  $[\succ^3]$ , relative rankings between a and b are the same for all voters. Thus, by IIA, we must have  $a \succ_W b$  in  $[\succ^3]$  as well. In  $[\succ^2]$  we had  $b \succ_W c$ , as b was at the very top of  $\succ_W$ . Relative rankings between b and c are the same in  $[\succ^2]$  and  $[\succ^3]$ . Thus in  $[\succ^3]$ ,  $b \succ_W c$ . Using the two above facts about  $[\succ^3]$  and transitivity, we can conclude that  $a \succ_W c$  in  $[\succ^3]$ .



**Step 3:**  $n^*$  (the agent who is extremely pivotal on outcome b) is a dictator over any pair ac not involving b.

Now construct one more preference profile,  $[\succ^4]$ , by changing  $[\succ^3]$  in two ways. First, arbitrarily change the position of b in each voter's ordering while keeping all other relative preferences the same. Second, move a to an arbitrary position in  $n^*$ 's preference ordering, with the constraint that a remains ranked higher than c. Observe that all voters other than  $n^*$ have entirely arbitrary preferences in  $[\succ^4]$ , while  $n^*$ 's preferences are arbitrary except that  $a \succ_{n^*} c$ .



**Step 3:**  $n^*$  (the agent who is extremely pivotal on outcome b) is a dictator over any pair ac not involving b.

In  $[\succ^3]$  and  $[\succ^4]$  all agents have the same relative preferences between a and c; thus, since  $a \succ_W c$  in  $[\succ^3]$  and by IIA,  $a \succ_W c$  in  $[\succ^4]$ . Thus we have determined the social preference between a and c without assuming anything except that  $a \succ_{n^*} c$ .

|       | rofi  |       |     |   |     |     |      |         | $[\succ^2$        |     | F   | rof   | ile   | [>  | $-^{3}]$ | :   |     |       |     |     | $\succ^4$ ] |            |
|-------|-------|-------|-----|---|-----|-----|------|---------|-------------------|-----|-----|-------|-------|-----|----------|-----|-----|-------|-----|-----|-------------|------------|
| 1.6   |       |       |     | с |     | 1.6 | 1.6  | 1.6     | с<br>             |     | 1 6 | 1.0   |       | a 🛾 | c        |     |     |       |     |     | с<br>а<br>b |            |
| i     | - i - | - i - | i   |   | i i | i   | - i  | -i-     | - i               | - i | i   | ľ     | - i ( | ь і |          | i - | i   | i.    | - i | 6   | i           | i -        |
|       |       | 0     | - 1 |   |     |     |      | 0       |                   |     |     |       |       |     |          |     |     |       |     |     |             | 6          |
|       |       |       |     |   |     |     | 0    |         |                   |     |     |       | - 1   |     |          |     |     | - I.  | c 🖡 | · • |             | •          |
| 1 c … |       | c     | - 1 |   |     | C   |      | C       |                   |     |     | ··· • |       | c I |          | 1 c | a 1 | ··· • |     | c   | 1 ····      | 1 c        |
|       |       |       |     | 0 | 1 C |     |      |         |                   | 1 C |     |       |       |     | 0        | 0   |     |       | 6 8 |     | • a         | <b>1</b> a |
|       |       |       | - 1 |   |     | 0   |      |         |                   |     | 1 c |       |       |     |          |     | - C |       |     |     |             |            |
|       |       |       |     |   |     |     | C .  |         | 6                 |     |     |       |       |     |          |     |     | - L I | a 🖡 |     | 6           | •          |
|       |       | • b   |     | ь | l b |     |      |         | 6                 | • b |     |       |       |     | ь        | b   | 6   |       |     |     |             | •          |
| 1     | n'-1  | $n^*$ | n'+ | 1 | N   | 1   | n'-1 | $n^{*}$ | n <sup>1</sup> +1 | N   | 1   | n'-1  | n'    | n'+ | 1        | N   |     |       |     |     | (+1         |            |

**Step 4:**  $n^*$  is a dictator over all pairs ab.

Consider some third outcome c. By the argument in Step 2, there is a voter  $n^{**}$  who is extremely pivotal for c. By the argument in Step 3,  $n^{**}$  is a dictator over any pair  $\alpha\beta$  not involving c. Of course, ab is such a pair  $\alpha\beta$ . We have already observed that  $n^*$  is able to affect W's ab ranking—for example, when  $n^*$  was able to change  $a \succ_W b$  in profile  $[\succ^1]$  into  $b \succ_W a$  in profile  $[\succ^2]$ . Hence,  $n^{**}$  and  $n^*$  must be the same agent.