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Formal Definition

Definition

A stochastic game is a tuple (Q,N,A1, . . . , An, P, r1, . . . , rn),
where

Q is a finite set of states,

N is a finite set of n players,

Ai is a finite set of actions available to player i. Let
A = A1 × · · · ×An be the vector of all players’ actions,

P : Q×A×Q→ [0, 1] is the transition probability function;
let P (q, a, q̂) be the probability of transitioning from state s
to state q̂ after joint action a,

ri : Q×A→ R is a real-valued payoff function for player i.
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Strategies

What is a pure strategy?
pick an action conditional on every possible history
of course, mixtures over these pure strategies are possible too!

Some interesting restricted classes of strategies:
behavioral strategy: si(ht, aij ) returns the probability of
playing action aij for history ht.

the substantive assumption here is that mixing takes place at
each history independently, not once at the beginning of the
game

Markov strategy: si is a behavioral strategy in which
si(ht, aij

) = si(h′t, aij
) if qt = q′t, where qt and q′t are the final

states of ht and h′t, respectively.
for a given time t, the distribution over actions only depends
on the current state

stationary strategy: si is a Markov strategy in which
si(ht1 , aij

) = si(h′t2 , aij
) if qt1 = q′t2 , where qt1 and q′t2 are

the final states of ht1 and h′t2 , respectively.
no dependence even on t
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Definition 1: Information Sets

Bayesian game: a set of games that differ only in their
payoffs, a common prior defined over them, and a partition
structure over the games for each agent.

Definition (Bayesian Game: Information Sets)

A Bayesian game is a tuple (N,G, P, I) where

N is a set of agents,

G is a set of games with N agents each such that if g, g′ ∈ G
then for each agent i ∈ N the strategy space in g is identical
to the strategy space in g′,

P ∈ Π(G) is a common prior over games, where Π(G) is the
set of all probability distributions over G, and

I = (I1, ..., IN ) is a set of partitions of G, one for each agent.
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Definition 1: Example

150 6 Richer Representations: Beyond the Normal and Extensive Forms

I2,1 I2,2

I1,1

A
1 0
0 3
p = 0.2

B
2 1
1 4
p = 0.1

C
1 3
2 1
p = 0.1

D
1 0
4 0
p = 0

I1,2

E
3 2
0 3
p = 0.1

F
2 4
1 1
p = 0.1

G
0 1
3 1

p = 0.25

H
2 0
3 4

p = 0.15

Figure 6.7 A Bayesian game

receive individual signals about Nature’s choice, and these are captured by their infor-
mation sets, in a standard way. The agents have no additionalinformation; in particular,
the information sets capture the fact that agents make theirchoices without knowing
the choices of others. Thus, we have reduced games of incomplete information to
games of imperfect information, albeit ones with chance moves. These chance moves
of Nature require minor adjustments of existing definitions, replacing payoffs by their
expectations, given Nature’s moves.5

For example, the Bayesian game of Figure 6.7 can be represented in extensive form
as depicted in Figure 6.8.
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Figure 6.8 The Bayesian game from Figure 6.7 in extensive form

Although this second definition of Bayesian games can be moreinitially intuitive
than our first definition, it can also be more cumbersome to work with. This is be-

5. Note that the special structure of this extensive form means that we do not have to agonize over the
refinements of Nash equilibrium; since agents have no information about prior choices made other than by
nature, all Nash equilibria are also sequential equilibria.

c©Shoham and Leyton-Brown, 2006
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Definition 2: Extensive Form with Chance Moves

Add an agent, “Nature,” who follows a commonly known
mixed strategy.

Thus, reduce Bayesian games to extensive form games of
imperfect information.

This definition is cumbersome for the same reason that IIEF is
a cumbersome way of representing matrix games like
Prisoner’s dilemma

however, it makes sense when the agents really do move
sequentially, and at least occasionally observe each other’s
actions.
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Definition 2: Example
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Definition 3: Epistemic Types

Directly represent uncertainty over utility function using the
notion of epistemic type.

Definition

A Bayesian game is a tuple (N,A,Θ, p, u) where

N is a set of agents,

A = (A1, . . . , An), where Ai is the set of actions available to
player i,

Θ = (Θ1, . . . ,Θn), where Θi is the type space of player i,

p : Θ→ [0, 1] is the common prior over types,

u = (u1, . . . , un), where ui : A×Θ→ R is the utility
function for player i.
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Definition 3: Example
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152 6 Richer Representations: Beyond the Normal and Extensive Forms

a1 a2 θ1 θ2 u1

U L θ1,1 θ2,1 4/3
U L θ1,1 θ2,2 1
U L θ1,2 θ2,1 5/2
U L θ1,2 θ2,2 3/4
U R θ1,1 θ2,1 1/3
U R θ1,1 θ2,2 3
U R θ1,2 θ2,1 3
U R θ1,2 θ2,2 5/8

a1 a2 θ1 θ2 u1

D L θ1,1 θ2,1 1/3
D L θ1,1 θ2,2 2
D L θ1,2 θ2,1 1/2
D L θ1,2 θ2,2 3
D R θ1,1 θ2,1 10/3
D R θ1,1 θ2,2 1
D R θ1,2 θ2,1 2
D R θ1,2 θ2,2 17/8

Figure 6.9 Utility function u1 for the Bayesian game from Figure 6.7.

6.3.2 Analyzing Bayesian games

Now that we have defined Bayesian games we must explain how to reason about them.
We will do this using the epistemic type definition above, because that is the defini-
tion most commonly used in mechanism design (discussed in Chapter 8), one of the
main applications of Bayesian games. All of the concepts defined below can also be
expressed in terms of the first two Bayesian game definitions,of course; we leave this
exercise to the reader.

The first task is to define an agent’s strategy space in a Bayesian game. Recall
that in an imperfect-information extensive-form game a pure strategy was a mapping
from information sets to actions. The definition is similar in Bayesian games: a pure
strategysi : Θi → Ai is a mapping from every type agenti could have to the action
he would play if he had that type. We can then define mixed strategies in the natural
way: a mixed strategysi : Θi → Π(Ai) is a mapping fromi’s type to a probability
distribution over his action choices. As before, we denote by Si the set of alli’s mixed
strategies. Furthermore, we use the notationsj(aj |θj) to denote the probability under
mixed strategysj that agentj plays actionaj , given thatj’s type isθj .

Next, we define an agent’s expected utility. In a Bayesian game setting, there are
three meaningful notions of expected utility:ex-ante, ex-interimandex-post. The first
discusses the situation in which the agent knows nothing about agents’ actual types, the
second considers the setting in which an agent knows his own type but not the types of
the other agents, and in the third case the agent knows all agents’ types.

Definition 6.3.3 (Ex-Interim Expected Utility) Agenti’s ex-interimexpected utilityex-interim
expected utility in a Bayesian game(N,A,Θ, p, u), wherei’s type isθi and where the agents’ strate-

gies are given by the mixed strategy profiles, is defined as

EUi(s|θi) =
∑

θ−i∈Θ−i

p(θ−i|θi)
∑

a∈A


∏

j∈N

sj(aj |θj)


ui(a, θ−i, θi). (6.1)

Why do we need such a complex equation to express the straightforward notion of
expected utility in Bayesian games? Intuitively, it is because the utility functionui is
defined in terms of actions and the joint type vector, buti has uncertainty about oth-
ers’ types and about what (pure) actions they will play. Thus, i must consider every

c©Shoham and Leyton-Brown, 2006
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Strategies

Pure strategy: si : Θi → Ai
a mapping from every type agent i could have to the action he
would play if he had that type.

Mixed strategy: si : Θi → Π(Ai)
a mapping from i’s type to a probability distribution over his
action choices.

sj(aj |θj)
the probability under mixed strategy sj that agent j plays
action aj , given that j’s type is θj .
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Expected Utility

Three meaningful notions of expected utility:

ex-ante

the agent knows nothing about anyone’s actual type;

ex-interim

an agent knows his own type but not the types of the other
agents;

ex-post

the agent knows all agents’ types.
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Ex-interim expected utility

Definition (Ex-interim expected utility)

Agent i’s ex-interim expected utility in a Bayesian game
(N,A,Θ, p, u), where i’s type is θi and where the agents’
strategies are given by the mixed strategy profile s, is defined as

EUi(s|θi) =
∑

θ−i∈Θ−i

p(θ−i|θi)
∑

a∈A


∏

j∈N
sj(aj |θj)


ui(a, θ−i, θi).

i must consider every θ−i and every a in order to evaluate
ui(a, θi, θ−i).
i must weight this utility value by:

the probability that a would be realized given all players’ mixed
strategies and types;
the probability that the other players’ types would be θ−i given
that his own type is θi.
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Ex-ante expected utility

Definition (Ex-ante expected utility)

Agent i’s ex-ante expected utility in a Bayesian game
(N,A,Θ, p, u), where the agents’ strategies are given by the mixed
strategy profile s, is defined as

EUi(s) =
∑

θi∈Θi

p(θi)EUi(s|θi)

or equivalently as

EUi(s) =
∑

θ∈Θ

p(θ)
∑

a∈A


∏

j∈N
sj(aj |θj)


ui(a, θ).
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Ex-post expected utility

Definition (Ex-post expected utility)

Agent i’s ex-post expected utility in a Bayesian game
(N,A,Θ, p, u), where the agents’ strategies are given by s and the
agent’ types are given by θ, is defined as

EUi(s, θ) =
∑

a∈A


∏

j∈N
sj(aj |θj)


ui(a, θ).

The only uncertainty here concerns the other agents’ mixed
strategies, since i knows everyone’s type.
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Best response

Definition (Best response in a Bayesian game)

The set of agent i’s best responses to mixed strategy profile s−i
are given by

BRi(s−i) = arg max
s′i∈Si

EUi(s′i, s−i).

it may seem odd that BR is calculated based on i’s ex-ante
expected utility.

However, write EUi(s) as
∑

θi∈Θi
p(θi)EUi(s|θi) and observe

that EUi(s′i, s−i|θi) does not depend on strategies that i
would play if his type were not θi.

Thus, we are in fact performing independent maximization of
i’s ex-interim expected utility conditioned on each type that
he could have.
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Nash equilibrium

Definition (Bayes-Nash equilibrium)

A Bayes-Nash equilibrium is a mixed strategy profile s that satisfies
∀i si ∈ BRi(s−i).

we can also construct an induced normal form for Bayesian
games

the numbers in the cells will correspond to ex-ante expected
utilities

however as argued above, as long as the strategy space is
unchanged, best responses don’t change between the ex-ante
and ex-interim cases.
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ex-post Equilibrium

Definition (ex-post equilibrium)

A ex-post equilibrium is a mixed strategy profile s that satisfies
∀θ, ∀i, si ∈ arg maxs′i∈Si

EUi(s′i, s−i, θ).

somewhat similar to dominant strategy, but not quite

EP: agents do not need to have accurate beliefs about the
type distribution
DS: agents do not need to have accurate beliefs about others’
strategies
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Introduction

Our setting now:

a set of outcomes

agents have preferences across them

for the moment, we won’t consider incentive issues:

center knows agents’ preferences, or they declare truthfully

the goal: a social choice function: a mapping from everyone’s
preferences to a particular outcome, which is enforced

how to pick such functions with desirable properties?
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Formal model

Definition (Social choice function)

Assume a set of agents N = {1, 2, . . . , n}, and a set of outcomes
(or alternatives, or candidates) O. Let L- be the set of non-strict
total orders on O. A social choice function (over N and O) is a
function C : L-

n 7→ O.

Definition (Social welfare function)

Let N,O,L- be as above. A social welfare function (over N and
O) is a function W : L-

n 7→ L-.

Analyzing Bayesian Games; Social Choice Lecture 11, Slide 22
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Non-Ranking Voting Schemes

Plurality

pick the outcome which is preferred by the most people

Cumulative voting

distribute e.g., 5 votes each
possible to vote for the same outcome multiple times

Approval voting

accept as many outcomes as you “like”
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Ranking Voting Schemes

Plurality with elimination (“instant runoff”)
everyone selects their favorite outcome
the outcome with the fewest votes is eliminated
repeat until one outcome remains

Borda
assign each outcome a number.
The most preferred outcome gets a score of n− 1, the next
most preferred gets n− 2, down to the nth outcome which
gets 0.
Then sum the numbers for each outcome, and choose the one
that has the highest score

Pairwise elimination
in advance, decide a schedule for the order in which pairs will
be compared.
given two outcomes, have everyone determine the one that
they prefer
eliminate the outcome that was not preferred, and continue
with the schedule

Analyzing Bayesian Games; Social Choice Lecture 11, Slide 24
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Condorcet Condition

If there is a candidate who is preferred to every other
candidate in pairwise runoffs, that candidate should be the
winner

While the Condorcet condition is considered an important
property for a voting system to satisfy, there is not always a
Condorcet winner

sometimes, there’s a cycle where A defeats B, B defeats C,
and C defeats A in their pairwise runoffs

Analyzing Bayesian Games; Social Choice Lecture 11, Slide 25
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Condorcet example

499 agents: A � B � C
3 agents: B � C � A

498 agents: C � B � A

What is the Condorcet winner?

B

What would win under plurality voting? A

What would win under plurality with elimination? C
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Sensitivity to Losing Candidate

35 agents: A � C � B
33 agents: B � A � C
32 agents: C � B � A

What candidate wins under plurality voting?

A

What candidate wins under Borda voting? A

Now consider dropping C. Now what happens under both
Borda and plurality? B wins.
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Sensitivity to Agenda Setter

35 agents: A � C � B
33 agents: B � A � C
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Another Pairwise Elimination Problem

1 agent: B � D � C � A
1 agent: A � B � D � C
1 agent: C � A � B � D

Who wins under pairwise elimination with the ordering
A,B,C,D?

D.

What is the problem with this?

all of the agents prefer B to D—the selected candidate is
Pareto-dominated!
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