Analyzing Bayesian Games; Social Choice

Lecture 11

Analyzing Bayesian Games; Social Choice

Lecture 11, Slide 1

Lecture Overview

- 2 Analyzing Bayesian games
- 3 Social Choice
- 4 Voting Paradoxes

Analyzing Bayesian Games; Social Choice

3 > 4 3

Formal Definition

Definition

A stochastic game is a tuple $(Q, N, A_1, \ldots, A_n, P, r_1, \ldots, r_n)$, where

- Q is a finite set of states,
- N is a finite set of n players,
- A_i is a finite set of actions available to player *i*. Let $A = A_1 \times \cdots \times A_n$ be the vector of all players' actions,
- $P: Q \times A \times Q \rightarrow [0,1]$ is the transition probability function; let $P(q, a, \hat{q})$ be the probability of transitioning from state s to state \hat{q} after joint action a,
- $r_i: Q \times A \to \mathbb{R}$ is a real-valued payoff function for player *i*.

Recap	Analyzing Bayesian games	Social Choice

Strategies

- What is a pure strategy?
 - pick an action conditional on every possible history
 - of course, mixtures over these pure strategies are possible too!
- Some interesting restricted classes of strategies:
 - behavioral strategy: $s_i(h_t, a_{i_j})$ returns the probability of playing action a_{i_j} for history h_t .
 - the substantive assumption here is that mixing takes place at each history independently, not once at the beginning of the game
 - Markov strategy: s_i is a behavioral strategy in which $s_i(h_t, a_{i_j}) = s_i(h'_t, a_{i_j})$ if $q_t = q'_t$, where q_t and q'_t are the final states of h_t and h'_t , respectively.
 - for a given time t, the distribution over actions only depends on the current state
 - stationary strategy: s_i is a Markov strategy in which $s_i(h_{t_1}, a_{i_j}) = s_i(h'_{t_2}, a_{i_j})$ if $q_{t_1} = q'_{t_2}$, where q_{t_1} and q'_{t_2} are the final states of h_{t_1} and h'_{t_2} , respectively.
 - $\bullet\,$ no dependence even on t

Definition 1: Information Sets

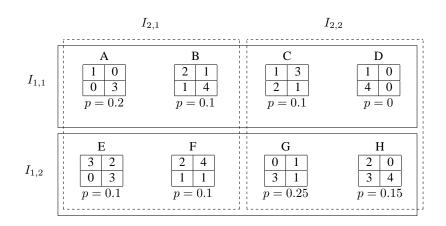
• Bayesian game: a set of games that differ only in their payoffs, a common prior defined over them, and a partition structure over the games for each agent.

Definition (Bayesian Game: Information Sets)

- A Bayesian game is a tuple (N, G, P, I) where
 - N is a set of agents,
 - G is a set of games with N agents each such that if $g, g' \in G$ then for each agent $i \in N$ the strategy space in g is identical to the strategy space in g',
 - $P\in \Pi(G)$ is a common prior over games, where $\Pi(G)$ is the set of all probability distributions over G, and
 - $I = (I_1, ..., I_N)$ is a set of partitions of G, one for each agent.

- <白> < ヨ> < 白>

Definition 1: Example

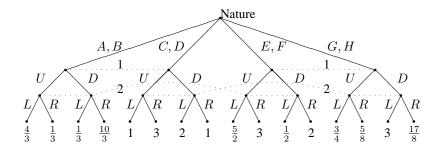


・ロト ・回ト ・ヨト ・ヨト

Definition 2: Extensive Form with Chance Moves

- Add an agent, "Nature," who follows a commonly known mixed strategy.
- Thus, reduce Bayesian games to extensive form games of imperfect information.
- This definition is cumbersome for the same reason that IIEF is a cumbersome way of representing matrix games like Prisoner's dilemma
 - however, it makes sense when the agents really do move sequentially, and at least occasionally observe each other's actions.

Definition 2: Example



э

< 🗗 >

Definition 3: Epistemic Types

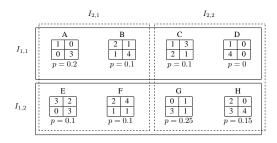
• Directly represent uncertainty over utility function using the notion of epistemic type.

Definition

A Bayesian game is a tuple (N,A,Θ,p,u) where

- N is a set of agents,
- $A = (A_1, \ldots, A_n)$, where A_i is the set of actions available to player i,
- $\Theta = (\Theta_1, \dots, \Theta_n)$, where Θ_i is the type space of player i,
- $p: \Theta \rightarrow [0,1]$ is the common prior over types,
- $u = (u_1, \ldots, u_n)$, where $u_i : A \times \Theta \to \mathbb{R}$ is the utility function for player *i*.

Definition 3: Example



a_1	a_2	θ_1	θ_2	u_1
U	L	$\theta_{1,1}$	$\theta_{2,1}$	4/3
U	L	$\theta_{1,1}$	$\theta_{2,2}$	1
U	L	$\theta_{1,2}$	$\theta_{2,1}$	5/2
U	L	$\theta_{1,2}$	$\theta_{2,2}$	3/4
U	R	$\theta_{1,1}$	$\theta_{2,1}$	1/3
U	R	$\theta_{1,1}$	$\theta_{2,2}$	3
U	R	$\theta_{1,2}$	$\theta_{2,1}$	3
U	R	$\theta_{1,2}$	$\theta_{2,2}$	5/8

a_1	a_2	θ_1	θ_2	u_1
D	L	$\theta_{1,1}$	$\theta_{2,1}$	1/3
D	L	$\theta_{1,1}$	$\theta_{2,2}$	2
D	L	$\theta_{1,2}$	$\theta_{2,1}$	1/2
D	L	$\theta_{1,2}$	$\theta_{2,2}$	3
D	R	$\theta_{1,1}$	$\theta_{2,1}$	10/3
D	R	$\theta_{1,1}$	$\theta_{2,2}$	1
D	R	$\theta_{1,2}$	$\theta_{2,1}$	2
D	R	$\theta_{1,2}$	$\theta_{2,2}$	17/8

Lecture Overview

2 Analyzing Bayesian games

Analyzing Bayesian Games; Social Choice

Ξ.

Strategies

- Pure strategy: $s_i: \Theta_i \to A_i$
 - a mapping from every type agent *i* could have to the action he would play if he had that type.
- Mixed strategy: $s_i: \Theta_i \to \Pi(A_i)$
 - a mapping from *i*'s type to a probability distribution over his action choices.
- $s_j(a_j|\theta_j)$
 - the probability under mixed strategy s_j that agent j plays action a_j , given that j's type is θ_j .

< E > < E > …

Expected Utility

Three meaningful notions of expected utility:

- ex-ante
 - the agent knows nothing about anyone's actual type;
- ex-interim
 - an agent knows his own type but not the types of the other agents;
- ex-post
 - the agent knows all agents' types.

Ex-interim expected utility

Definition (*Ex-interim* expected utility)

Agent *i*'s *ex-interim* expected utility in a Bayesian game (N, A, Θ, p, u) , where *i*'s type is θ_i and where the agents' strategies are given by the mixed strategy profile s, is defined as

$$EU_i(s|\theta_i) = \sum_{\theta_{-i} \in \Theta_{-i}} p(\theta_{-i}|\theta_i) \sum_{a \in A} \left(\prod_{j \in N} s_j(a_j|\theta_j) \right) u_i(a, \theta_{-i}, \theta_i).$$

- *i* must consider every θ_{-i} and every *a* in order to evaluate $u_i(a, \theta_i, \theta_{-i})$.
- *i* must weight this utility value by:
 - the probability that *a* would be realized given all players' mixed strategies and types;
 - the probability that the other players' types would be θ_{-i} given that his own type is θ_i .

Ex-ante expected utility

Definition (*Ex-ante* expected utility)

Agent *i*'s *ex-ante* expected utility in a Bayesian game (N, A, Θ, p, u) , where the agents' strategies are given by the mixed strategy profile s, is defined as

$$EU_i(s) = \sum_{\theta_i \in \Theta_i} p(\theta_i) EU_i(s|\theta_i)$$

or equivalently as

$$EU_i(s) = \sum_{\theta \in \Theta} p(\theta) \sum_{a \in A} \left(\prod_{j \in N} s_j(a_j | \theta_j) \right) u_i(a, \theta).$$

Ex-post expected utility

Definition (*Ex-post* expected utility)

Agent *i*'s *ex-post* expected utility in a Bayesian game (N, A, Θ, p, u) , where the agents' strategies are given by s and the agent' types are given by θ , is defined as

$$EU_i(s,\theta) = \sum_{a \in A} \left(\prod_{j \in N} s_j(a_j | \theta_j) \right) u_i(a,\theta).$$

• The only uncertainty here concerns the other agents' mixed strategies, since *i* knows everyone's type.

Best response

Definition (Best response in a Bayesian game)

The set of agent $i{\rm 's}$ best responses to mixed strategy profile s_{-i} are given by

$$BR_i(s_{-i}) = \arg\max_{s'_i \in S_i} EU_i(s'_i, s_{-i}).$$

- it may seem odd that *BR* is calculated based on *i*'s *ex-ante* expected utility.
- However, write $EU_i(s)$ as $\sum_{\theta_i \in \Theta_i} p(\theta_i) EU_i(s|\theta_i)$ and observe that $EU_i(s'_i, s_{-i}|\theta_i)$ does not depend on strategies that i would play if his type were not θ_i .
- Thus, we are in fact performing independent maximization of *i*'s *ex-interim* expected utility conditioned on each type that he could have.

Nash equilibrium

Definition (Bayes-Nash equilibrium)

A Bayes-Nash equilibrium is a mixed strategy profile s that satisfies $\forall i \ s_i \in BR_i(s_{-i}).$

- we can also construct an induced normal form for Bayesian games
- the numbers in the cells will correspond to *ex-ante* expected utilities
 - however as argued above, as long as the strategy space is unchanged, best responses don't change between the *ex-ante* and *ex-interim* cases.

ex-post Equilibrium

Definition (*ex-post* equilibrium)

A *ex-post* equilibrium is a mixed strategy profile s that satisfies $\forall \theta, \forall i, s_i \in \arg \max_{s'_i \in S_i} EU_i(s'_i, s_{-i}, \theta).$

- somewhat similar to dominant strategy, but not quite
 - EP: agents do not need to have accurate beliefs about the type distribution
 - DS: agents do not need to have accurate beliefs about others' strategies

Lecture Overview

2 Analyzing Bayesian games

Analyzing Bayesian Games; Social Choice

< ∃⇒

Introduction

Our setting now:

- a set of outcomes
- agents have preferences across them
- for the moment, we won't consider incentive issues:
 - center knows agents' preferences, or they declare truthfully
- the goal: a social choice function: a mapping from everyone's preferences to a particular outcome, which is enforced
 - how to pick such functions with desirable properties?

Formal model

Definition (Social choice function)

Assume a set of agents $N = \{1, 2, ..., n\}$, and a set of outcomes (or alternatives, or candidates) O. Let L_{-} be the set of non-strict total orders on O. A social choice function (over N and O) is a function $C : L_{-}^{n} \mapsto O$.

Definition (Social welfare function)

Let N, O, L_{-} be as above. A social welfare function (over N and O) is a function $W: L_{-}^{n} \mapsto L_{-}$.

Non-Ranking Voting Schemes

Plurality

• pick the outcome which is preferred by the most people

Cumulative voting

- distribute e.g., 5 votes each
- possible to vote for the same outcome multiple times

Approval voting

accept as many outcomes as you "like"

Ranking Voting Schemes

- Plurality with elimination ("instant runoff")
 - everyone selects their favorite outcome
 - the outcome with the fewest votes is eliminated
 - repeat until one outcome remains
- Borda
 - assign each outcome a number.
 - The most preferred outcome gets a score of n-1, the next most preferred gets n-2, down to the $n^{\rm th}$ outcome which gets 0.
 - Then sum the numbers for each outcome, and choose the one that has the highest score
- Pairwise elimination
 - in advance, decide a schedule for the order in which pairs will be compared.
 - given two outcomes, have everyone determine the one that they prefer
 - eliminate the outcome that was not preferred, and continue with the schedule

Condorcet Condition

- If there is a candidate who is preferred to every other candidate in pairwise runoffs, that candidate should be the winner
- While the Condorcet condition is considered an important property for a voting system to satisfy, there is not always a Condorcet winner
- sometimes, there's a cycle where A defeats B, B defeats C, and C defeats A in their pairwise runoffs

499 agents:	$A \succ B \succ C$
3 agents:	$B \succ C \succ A$
498 agents:	$C \succ B \succ A$

• What is the Condorcet winner?

Analyzing Bayesian Games; Social Choice

< ≣⇒

499 agents:	$A \succ B \succ C$
3 agents:	$B \succ C \succ A$
498 agents:	$C \succ B \succ A$

• What is the Condorcet winner? B

Analyzing Bayesian Games; Social Choice

< ≣⇒

499 agents:	$A \succ B \succ C$
3 agents:	$B \succ C \succ A$
498 agents:	$C \succ B \succ A$

- What is the Condorcet winner? B
- What would win under plurality voting?

 $\begin{array}{lll} \mbox{499 agents:} & A \succ B \succ C \\ \mbox{3 agents:} & B \succ C \succ A \\ \mbox{498 agents:} & C \succ B \succ A \end{array}$

- What is the Condorcet winner? B
- \bullet What would win under plurality voting? A

499 agents:	$A \succ B \succ C$
3 agents:	$B \succ C \succ A$
498 agents:	$C \succ B \succ A$

- What is the Condorcet winner? B
- \bullet What would win under plurality voting? A
- What would win under plurality with elimination?

499 agents:	$A \succ B \succ C$
3 agents:	$B \succ C \succ A$
498 agents:	$C \succ B \succ A$

- What is the Condorcet winner? B
- \bullet What would win under plurality voting? A
- \bullet What would win under plurality with elimination? C

Lecture Overview

- 2 Analyzing Bayesian games
- 3 Social Choice

-

35 agents:	$A \succ C \succ B$
33 agents:	$B\succ A\succ C$
32 agents:	$C \succ B \succ A$

• What candidate wins under plurality voting?

Analyzing Bayesian Games; Social Choice

35 agents:	$A \succ C \succ B$
33 agents:	$B\succ A\succ C$
32 agents:	$C \succ B \succ A$

\bullet What candidate wins under plurality voting? A

Analyzing Bayesian Games; Social Choice

35 agents:	$A \succ C \succ B$
33 agents:	$B\succ A\succ C$
32 agents:	$C \succ B \succ A$

- \bullet What candidate wins under plurality voting? A
- What candidate wins under Borda voting?

35 agents:	$A \succ C \succ B$
33 agents:	$B\succ A\succ C$
32 agents:	$C \succ B \succ A$

- \bullet What candidate wins under plurality voting? A
- \bullet What candidate wins under Borda voting? A

Sensitivity to Losing Candidate

 $\begin{array}{lll} \textbf{35 agents:} & A \succ C \succ B \\ \textbf{33 agents:} & B \succ A \succ C \\ \textbf{32 agents:} & C \succ B \succ A \end{array}$

- What candidate wins under plurality voting? A
- What candidate wins under Borda voting? A
- Now consider dropping C. Now what happens under both Borda and plurality?

Sensitivity to Losing Candidate

 $\begin{array}{lll} \textbf{35 agents:} & A \succ C \succ B \\ \textbf{33 agents:} & B \succ A \succ C \\ \textbf{32 agents:} & C \succ B \succ A \end{array}$

- What candidate wins under plurality voting? A
- What candidate wins under Borda voting? A
- Now consider dropping C. Now what happens under both Borda and plurality? B wins.

35 agents: $A \succ C \succ B$ 33 agents: $B \succ A \succ C$ 32 agents: $C \succ B \succ A$

• Who wins pairwise elimination, with the ordering A, B, C?

Analyzing Bayesian Games; Social Choice

35 agents: $A \succ C \succ B$ 33 agents: $B \succ A \succ C$ 32 agents: $C \succ B \succ A$

• Who wins pairwise elimination, with the ordering A, B, C? C

Analyzing Bayesian Games; Social Choice

- Who wins pairwise elimination, with the ordering A, B, C? C
- Who wins with the ordering A, C, B?

- Who wins pairwise elimination, with the ordering A, B, C? C
- Who wins with the ordering A, C, B? B

- Who wins pairwise elimination, with the ordering A, B, C? C
- Who wins with the ordering A, C, B? B
- Who wins with the ordering B, C, A?

- Who wins pairwise elimination, with the ordering A, B, C? C
- Who wins with the ordering A, C, B? B
- Who wins with the ordering B, C, A? A

 $\begin{array}{ll} 1 \text{ agent:} & B \succ D \succ C \succ A \\ 1 \text{ agent:} & A \succ B \succ D \succ C \\ 1 \text{ agent:} & C \succ A \succ B \succ D \end{array}$

• Who wins under pairwise elimination with the ordering *A*, *B*, *C*, *D*?

 $\begin{array}{ll} 1 \text{ agent:} & B \succ D \succ C \succ A \\ 1 \text{ agent:} & A \succ B \succ D \succ C \\ 1 \text{ agent:} & C \succ A \succ B \succ D \end{array}$

• Who wins under pairwise elimination with the ordering A, B, C, D? D.

 $\begin{array}{ll} 1 \text{ agent:} & B \succ D \succ C \succ A \\ 1 \text{ agent:} & A \succ B \succ D \succ C \\ 1 \text{ agent:} & C \succ A \succ B \succ D \end{array}$

- Who wins under pairwise elimination with the ordering A, B, C, D? D.
- What is the problem with this?

 $\begin{array}{ll} 1 \text{ agent:} & B \succ D \succ C \succ A \\ 1 \text{ agent:} & A \succ B \succ D \succ C \\ 1 \text{ agent:} & C \succ A \succ B \succ D \end{array}$

- Who wins under pairwise elimination with the ordering A, B, C, D? D.
- What is the problem with this?
 - *all* of the agents prefer B to D—the selected candidate is Pareto-dominated!

B K K B K