Analyzing Bayesian Games; Social Choice

Lecture 11

Lecture Overview

(1) Recap
(2) Analyzing Bayesian games
(3) Social Choice

4 Voting Paradoxes

Formal Definition

Definition

A stochastic game is a tuple $\left(Q, N, A_{1}, \ldots, A_{n}, P, r_{1}, \ldots, r_{n}\right)$, where

- Q is a finite set of states,
- N is a finite set of n players,
- A_{i} is a finite set of actions available to player i. Let $A=A_{1} \times \cdots \times A_{n}$ be the vector of all players' actions,
- $P: Q \times A \times Q \rightarrow[0,1]$ is the transition probability function; let $P(q, a, \hat{q})$ be the probability of transitioning from state s to state \hat{q} after joint action a,
- $r_{i}: Q \times A \rightarrow \mathbb{R}$ is a real-valued payoff function for player i.

Strategies

- What is a pure strategy?
- pick an action conditional on every possible history
- of course, mixtures over these pure strategies are possible too!
- Some interesting restricted classes of strategies:
- behavioral strategy: $s_{i}\left(h_{t}, a_{i_{j}}\right)$ returns the probability of playing action $a_{i_{j}}$ for history h_{t}.
- the substantive assumption here is that mixing takes place at each history independently, not once at the beginning of the game
- Markov strategy: s_{i} is a behavioral strategy in which $s_{i}\left(h_{t}, a_{i_{j}}\right)=s_{i}\left(h_{t}^{\prime}, a_{i_{j}}\right)$ if $q_{t}=q_{t}^{\prime}$, where q_{t} and q_{t}^{\prime} are the final states of h_{t} and h_{t}^{\prime}, respectively.
- for a given time t, the distribution over actions only depends on the current state
- stationary strategy: s_{i} is a Markov strategy in which $s_{i}\left(h_{t_{1}}, a_{i_{j}}\right)=s_{i}\left(h_{t_{2}}^{\prime}, a_{i_{j}}\right)$ if $q_{t_{1}}=q_{t_{2}}^{\prime}$, where $q_{t_{1}}$ and $q_{t_{2}}^{\prime}$ are the final states of $h_{t_{1}}$ and $h_{t_{2}}^{\prime}$, respectively.
- no dependence even on t

Definition 1: Information Sets

- Bayesian game: a set of games that differ only in their payoffs, a common prior defined over them, and a partition structure over the games for each agent.

Definition (Bayesian Game: Information Sets)

A Bayesian game is a tuple (N, G, P, I) where

- N is a set of agents,
- G is a set of games with N agents each such that if $g, g^{\prime} \in G$ then for each agent $i \in N$ the strategy space in g is identical to the strategy space in g^{\prime},
- $P \in \Pi(G)$ is a common prior over games, where $\Pi(G)$ is the set of all probability distributions over G, and
- $I=\left(I_{1}, \ldots, I_{N}\right)$ is a set of partitions of G, one for each agent.

Definition 1: Example

Definition 2: Extensive Form with Chance Moves

- Add an agent, "Nature," who follows a commonly known mixed strategy.
- Thus, reduce Bayesian games to extensive form games of imperfect information.
- This definition is cumbersome for the same reason that IIEF is a cumbersome way of representing matrix games like Prisoner's dilemma
- however, it makes sense when the agents really do move sequentially, and at least occasionally observe each other's actions.

Definition 2: Example

Definition 3: Epistemic Types

- Directly represent uncertainty over utility function using the notion of epistemic type.

Definition

A Bayesian game is a tuple (N, A, Θ, p, u) where

- N is a set of agents,
- $A=\left(A_{1}, \ldots, A_{n}\right)$, where A_{i} is the set of actions available to player i,
- $\Theta=\left(\Theta_{1}, \ldots, \Theta_{n}\right)$, where Θ_{i} is the type space of player i,
- $p: \Theta \rightarrow[0,1]$ is the common prior over types,
- $u=\left(u_{1}, \ldots, u_{n}\right)$, where $u_{i}: A \times \Theta \rightarrow \mathbb{R}$ is the utility function for player i.

Definition 3: Example

a_{1}	a_{2}	θ_{1}	θ_{2}	u_{1}
U	L	$\theta_{1,1}$	$\theta_{2,1}$	$4 / 3$
U	L	$\theta_{1,1}$	$\theta_{2,2}$	1
U	L	$\theta_{1,2}$	$\theta_{2,1}$	$5 / 2$
U	L	$\theta_{1,2}$	$\theta_{2,2}$	$3 / 4$
U	R	$\theta_{1,1}$	$\theta_{2,1}$	$1 / 3$
U	R	$\theta_{1,1}$	$\theta_{2,2}$	3
U	R	$\theta_{1,2}$	$\theta_{2,1}$	3
U	R	$\theta_{1,2}$	$\theta_{2,2}$	$5 / 8$

a_{1}	a_{2}	θ_{1}	θ_{2}	u_{1}
D	L	$\theta_{1,1}$	$\theta_{2,1}$	$1 / 3$
D	L	$\theta_{1,1}$	$\theta_{2,2}$	2
D	L	$\theta_{1,2}$	$\theta_{2,1}$	$1 / 2$
D	L	$\theta_{1,2}$	$\theta_{2,2}$	3
D	R	$\theta_{1,1}$	$\theta_{2,1}$	$10 / 3$
D	R	$\theta_{1,1}$	$\theta_{2,2}$	1
D	R	$\theta_{1,2}$	$\theta_{2,1}$	2
D	R	$\theta_{1,2}$	$\theta_{2,2}$	$17 / 8$

Lecture Overview

(1) Recap
(2) Analyzing Bayesian games
(3) Social Choice

4 Voting Paradoxes

Strategies

- Pure strategy: $s_{i}: \Theta_{i} \rightarrow A_{i}$
- a mapping from every type agent i could have to the action he would play if he had that type.
- Mixed strategy: $s_{i}: \Theta_{i} \rightarrow \Pi\left(A_{i}\right)$
- a mapping from i 's type to a probability distribution over his action choices.
- $s_{j}\left(a_{j} \mid \theta_{j}\right)$
- the probability under mixed strategy s_{j} that agent j plays action a_{j}, given that j 's type is θ_{j}.

Expected Utility

Three meaningful notions of expected utility:

- ex-ante
- the agent knows nothing about anyone's actual type;
- ex-interim
- an agent knows his own type but not the types of the other agents;
- ex-post
- the agent knows all agents' types.

Ex-interim expected utility

Definition (Ex-interim expected utility)

Agent i 's ex-interim expected utility in a Bayesian game (N, A, Θ, p, u), where i 's type is θ_{i} and where the agents' strategies are given by the mixed strategy profile s, is defined as

$$
E U_{i}\left(s \mid \theta_{i}\right)=\sum_{\theta_{-i} \in \Theta_{-i}} p\left(\theta_{-i} \mid \theta_{i}\right) \sum_{a \in A}\left(\prod_{j \in N} s_{j}\left(a_{j} \mid \theta_{j}\right)\right) u_{i}\left(a, \theta_{-i}, \theta_{i}\right)
$$

- i must consider every θ_{-i} and every a in order to evaluate $u_{i}\left(a, \theta_{i}, \theta_{-i}\right)$.
- i must weight this utility value by:
- the probability that a would be realized given all players' mixed strategies and types;
- the probability that the other players' types would be θ_{-i} given that his own type is θ_{i}.

Ex-ante expected utility

Definition (Ex-ante expected utility)

Agent i 's ex-ante expected utility in a Bayesian game (N, A, Θ, p, u), where the agents' strategies are given by the mixed strategy profile s, is defined as

$$
E U_{i}(s)=\sum_{\theta_{i} \in \Theta_{i}} p\left(\theta_{i}\right) E U_{i}\left(s \mid \theta_{i}\right)
$$

or equivalently as

$$
E U_{i}(s)=\sum_{\theta \in \Theta} p(\theta) \sum_{a \in A}\left(\prod_{j \in N} s_{j}\left(a_{j} \mid \theta_{j}\right)\right) u_{i}(a, \theta)
$$

Ex-post expected utility

Definition (Ex-post expected utility)

Agent i 's ex-post expected utility in a Bayesian game (N, A, Θ, p, u), where the agents' strategies are given by s and the agent' types are given by θ, is defined as

$$
E U_{i}(s, \theta)=\sum_{a \in A}\left(\prod_{j \in N} s_{j}\left(a_{j} \mid \theta_{j}\right)\right) u_{i}(a, \theta) .
$$

- The only uncertainty here concerns the other agents' mixed strategies, since i knows everyone's type.

Best response

Definition (Best response in a Bayesian game)

The set of agent i 's best responses to mixed strategy profile s_{-i} are given by

$$
B R_{i}\left(s_{-i}\right)=\arg \max _{s_{i}^{\prime} \in S_{i}} E U_{i}\left(s_{i}^{\prime}, s_{-i}\right) .
$$

- it may seem odd that $B R$ is calculated based on i 's ex-ante expected utility.
- However, write $E U_{i}(s)$ as $\sum_{\theta_{i} \in \Theta_{i}} p\left(\theta_{i}\right) E U_{i}\left(s \mid \theta_{i}\right)$ and observe that $E U_{i}\left(s_{i}^{\prime}, s_{-i} \mid \theta_{i}\right)$ does not depend on strategies that i would play if his type were not θ_{i}.
- Thus, we are in fact performing independent maximization of i 's ex-interim expected utility conditioned on each type that he could have.

Nash equilibrium

Definition (Bayes-Nash equilibrium)

A Bayes-Nash equilibrium is a mixed strategy profile s that satisfies $\forall i s_{i} \in B R_{i}\left(s_{-i}\right)$.

- we can also construct an induced normal form for Bayesian games
- the numbers in the cells will correspond to ex-ante expected utilities
- however as argued above, as long as the strategy space is unchanged, best responses don't change between the ex-ante and ex-interim cases.

ex-post Equilibrium

Definition (ex-post equilibrium)

A ex-post equilibrium is a mixed strategy profile s that satisfies $\forall \theta, \forall i, s_{i} \in \arg \max _{s_{i}^{\prime} \in S_{i}} E U_{i}\left(s_{i}^{\prime}, s_{-i}, \theta\right)$.

- somewhat similar to dominant strategy, but not quite
- EP: agents do not need to have accurate beliefs about the type distribution
- DS: agents do not need to have accurate beliefs about others' strategies

Lecture Overview

(1) Recap
(2) Analyzing Bayesian games
(3) Social Choice

4 Voting Paradoxes

Introduction

Our setting now:

- a set of outcomes
- agents have preferences across them
- for the moment, we won't consider incentive issues:
- center knows agents' preferences, or they declare truthfully
- the goal: a social choice function: a mapping from everyone's preferences to a particular outcome, which is enforced
- how to pick such functions with desirable properties?

Formal model

Definition (Social choice function)

Assume a set of agents $N=\{1,2, \ldots, n\}$, and a set of outcomes (or alternatives, or candidates) O. Let L_{-}be the set of non-strict total orders on O. A social choice function (over N and O) is a function $C: L_{-}{ }^{n} \mapsto O$.

Definition (Social welfare function)

Let N, O, L_{-}be as above. A social welfare function (over N and $O)$ is a function $W: L_{-}{ }^{n} \mapsto L_{-}$.

Non-Ranking Voting Schemes

- Plurality
- pick the outcome which is preferred by the most people
- Cumulative voting
- distribute e.g., 5 votes each
- possible to vote for the same outcome multiple times
- Approval voting
- accept as many outcomes as you "like"

Ranking Voting Schemes

- Plurality with elimination ("instant runoff")
- everyone selects their favorite outcome
- the outcome with the fewest votes is eliminated
- repeat until one outcome remains
- Borda
- assign each outcome a number.
- The most preferred outcome gets a score of $n-1$, the next most preferred gets $n-2$, down to the $n^{\text {th }}$ outcome which gets 0 .
- Then sum the numbers for each outcome, and choose the one that has the highest score
- Pairwise elimination
- in advance, decide a schedule for the order in which pairs will be compared.
- given two outcomes, have everyone determine the one that they prefer
- eliminate the outcome that was not preferred, and continue with the schedule

Condorcet Condition

- If there is a candidate who is preferred to every other candidate in pairwise runoffs, that candidate should be the winner
- While the Condorcet condition is considered an important property for a voting system to satisfy, there is not always a Condorcet winner
- sometimes, there's a cycle where A defeats B, B defeats C, and C defeats A in their pairwise runoffs

Condorcet example

$$
\begin{aligned}
499 \text { agents: } & A \succ B \succ C \\
3 \text { agents: } & B \succ C \succ A \\
498 \text { agents: } & C \succ B \succ A
\end{aligned}
$$

- What is the Condorcet winner?

Condorcet example

$$
\begin{aligned}
499 \text { agents: } & A \succ B \succ C \\
3 \text { agents: } & B \succ C \succ A \\
498 \text { agents: } & C \succ B \succ A
\end{aligned}
$$

- What is the Condorcet winner? B

Condorcet example

$$
\begin{aligned}
499 \text { agents: } & A \succ B \succ C \\
3 \text { agents: } & B \succ C \succ A \\
498 \text { agents: } & C \succ B \succ A
\end{aligned}
$$

- What is the Condorcet winner? B
- What would win under plurality voting?

Condorcet example

$$
\begin{aligned}
499 \text { agents: } & A \succ B \succ C \\
3 \text { agents: } & B \succ C \succ A \\
498 \text { agents: } & C \succ B \succ A
\end{aligned}
$$

- What is the Condorcet winner? B
- What would win under plurality voting? A

Condorcet example

$$
\begin{aligned}
499 \text { agents: } & A \succ B \succ C \\
3 \text { agents: } & B \succ C \succ A \\
498 \text { agents: } & C \succ B \succ A
\end{aligned}
$$

- What is the Condorcet winner? B
- What would win under plurality voting? A
- What would win under plurality with elimination?

Condorcet example

$$
\begin{aligned}
499 \text { agents: } & A \succ B \succ C \\
3 \text { agents: } & B \succ C \succ A \\
498 \text { agents: } & C \succ B \succ A
\end{aligned}
$$

- What is the Condorcet winner? B
- What would win under plurality voting? A
- What would win under plurality with elimination? C

Lecture Overview

(1) Recap
(2) Analyzing Bayesian games
(3) Social Choice

4 Voting Paradoxes

Sensitivity to Losing Candidate

$$
\begin{array}{ll}
35 \text { agents: } & A \succ C \succ B \\
33 \text { agents: } & B \succ A \succ C \\
32 \text { agents: } & C \succ B \succ A
\end{array}
$$

- What candidate wins under plurality voting?

Sensitivity to Losing Candidate

$$
\begin{array}{ll}
35 \text { agents: } & A \succ C \succ B \\
33 \text { agents: } & B \succ A \succ C \\
32 \text { agents: } & C \succ B \succ A
\end{array}
$$

- What candidate wins under plurality voting? A

Sensitivity to Losing Candidate

35 agents:	$A \succ C \succ B$
33 agents:	$B \succ A \succ C$
32 agents:	$C \succ B \succ A$

- What candidate wins under plurality voting? A
- What candidate wins under Borda voting?

Sensitivity to Losing Candidate

35 agents:	$A \succ C \succ B$
33 agents:	$B \succ A \succ C$
32 agents:	$C \succ B \succ A$

- What candidate wins under plurality voting? A
- What candidate wins under Borda voting? A

Sensitivity to Losing Candidate

35 agents:	$A \succ C \succ B$
33 agents:	$B \succ A \succ C$
32 agents:	$C \succ B \succ A$

- What candidate wins under plurality voting? A
- What candidate wins under Borda voting? A
- Now consider dropping C. Now what happens under both Borda and plurality?

Sensitivity to Losing Candidate

35 agents:	$A \succ C \succ B$
33 agents:	$B \succ A \succ C$
32 agents:	$C \succ B \succ A$

- What candidate wins under plurality voting? A
- What candidate wins under Borda voting? A
- Now consider dropping C. Now what happens under both Borda and plurality? B wins.

Sensitivity to Agenda Setter

$$
\begin{array}{ll}
35 \text { agents: } & A \succ C \succ B \\
33 \text { agents: } & B \succ A \succ C \\
32 \text { agents: } & C \succ B \succ A
\end{array}
$$

- Who wins pairwise elimination, with the ordering A, B, C ?

Sensitivity to Agenda Setter

$$
\begin{array}{ll}
35 \text { agents: } & A \succ C \succ B \\
33 \text { agents: } & B \succ A \succ C \\
32 \text { agents: } & C \succ B \succ A
\end{array}
$$

- Who wins pairwise elimination, with the ordering A, B, C ? C

Sensitivity to Agenda Setter

$$
\begin{array}{ll}
35 \text { agents: } & A \succ C \succ B \\
33 \text { agents: } & B \succ A \succ C \\
32 \text { agents: } & C \succ B \succ A
\end{array}
$$

- Who wins pairwise elimination, with the ordering A, B, C ? C
- Who wins with the ordering A, C, B ?

Sensitivity to Agenda Setter

$$
\begin{array}{ll}
35 \text { agents: } & A \succ C \succ B \\
33 \text { agents: } & B \succ A \succ C \\
32 \text { agents: } & C \succ B \succ A
\end{array}
$$

- Who wins pairwise elimination, with the ordering A, B, C ? C
- Who wins with the ordering A, C, B ? B

Sensitivity to Agenda Setter

$$
\begin{array}{ll}
35 \text { agents: } & A \succ C \succ B \\
33 \text { agents: } & B \succ A \succ C \\
32 \text { agents: } & C \succ B \succ A
\end{array}
$$

- Who wins pairwise elimination, with the ordering A, B, C ? C
- Who wins with the ordering A, C, B ? B
- Who wins with the ordering B, C, A ?

Sensitivity to Agenda Setter

$$
\begin{array}{ll}
35 \text { agents: } & A \succ C \succ B \\
33 \text { agents: } & B \succ A \succ C \\
32 \text { agents: } & C \succ B \succ A
\end{array}
$$

- Who wins pairwise elimination, with the ordering A, B, C ? C
- Who wins with the ordering A, C, B ? B
- Who wins with the ordering B, C, A ? A

Another Pairwise Elimination Problem

$$
\begin{array}{ll}
1 \text { agent: } & B \succ D \succ C \succ A \\
1 \text { agent: } & A \succ B \succ D \succ C \\
1 \text { agent: } & C \succ A \succ B \succ D
\end{array}
$$

- Who wins under pairwise elimination with the ordering A, B, C, D ?

Another Pairwise Elimination Problem

$$
\begin{array}{ll}
1 \text { agent: } & B \succ D \succ C \succ A \\
1 \text { agent: } & A \succ B \succ D \succ C \\
1 \text { agent: } & C \succ A \succ B \succ D
\end{array}
$$

- Who wins under pairwise elimination with the ordering A, B, C, D ? D.

Another Pairwise Elimination Problem

$$
\begin{array}{ll}
1 \text { agent: } & B \succ D \succ C \succ A \\
1 \text { agent: } & A \succ B \succ D \succ C \\
1 \text { agent: } & C \succ A \succ B \succ D
\end{array}
$$

- Who wins under pairwise elimination with the ordering A, B, C, D ? D.
- What is the problem with this?

Another Pairwise Elimination Problem

$$
\begin{array}{ll}
1 \text { agent: } & B \succ D \succ C \succ A \\
1 \text { agent: } & A \succ B \succ D \succ C \\
1 \text { agent: } & C \succ A \succ B \succ D
\end{array}
$$

- Who wins under pairwise elimination with the ordering A, B, C, D ? D.
- What is the problem with this?
- all of the agents prefer B to D-the selected candidate is Pareto-dominated!

