
An overview of online mechanism design

Course project for CS532a (Multi-agent systems)

Matt Hoffman
hoffmanm@cs.ubc.ca

December 27, 2006

Abstract

Online mechanism design is a generalization of traditional mechanism
design which allows for dynamically changing sets of agents able to in-
teract with the mechanism over some period of time. Aside from dealing
with agents coming and going, the mechanism must make individual de-
cisions as time progresses. This paper gives a brief overview of the online
nature of this topic, and delves more deeply into the use of Markov deci-
sion processes for choosing outcomes that maximize the social welfare of
all the agents.

1 Introduction

Classically, the study of mechanism design (MD) focuses on modeling situations
in which all agents participate in a one-time decision made over some set of
outcomes. This assumes that all agents are present when the mechanism (an
auction for example) begins, and that all agents await the mechanism’s decision.
This characterization is slightly misleading in that these “one-time” decisions
can involve an iterative process (e.g. indirect mechanisms) during which bids
are made by different agents over successive iterations. For the purposes of this
paper we will view iterative mechanisms as single time-step models, where this
time-step just happens to be broken across several different iterations. This
distinction still fits well with our notion of “classic” MD since all agents must
be present when the iterative mechanism begins and must await its conclusion.

Online mechanisms generalize this model by introducing the notion of time
dependency. Under the online model agents can arrive and depart at any discrete
point in time, and the mechanism must make decisions at each time-step. In
the next section we will formalize this model.

2 Formalizing the problem of online MD

For this paper we will consider finite time-horizon problems wherein decisions
must be made at discrete time points T = {1, . . . , T}. We will let o = (o1, . . . , oT )

1



denote a possible sequence of outcomes, or decisions, such that each decision ot

is drawn from the set Ot representing all feasible outcomes at time t. It might
for example hold that OT ⊆ · · · ⊆ O1, i.e. the number of feasible outcomes
will decrease over time. Intuitively this sequence of sets might correspond to
a repeated auction over a total of k items; here the sum over items sold at all
time-steps cannot exceed k. It is worth noting, however, that this formulation
allows for more general models.

For each agent i ∈ I interacting with the mechanism we will let ai, di ∈ T
denote the arrival and departure times respectively and let vi(o) ≥ 0 denote
the valuation each agent has for the sequence of decisions o. It is assumed that
agents have no valuation for decisions made outside of the interval [ai, di]. This
assumption is not overly restrictive since agents can have no affect on outcomes
outside this interval that are not somehow reflected in their valuations inside
the interval. We also assume that agents care only about maximizing their own
utility, and have no valuation for other agents’ utilities.

We can combine the previously introduced information by defining the type
of each agent as θi = (ai, di, vi) which is drawn from some type-space Θ. We
assume that each agent’s type is drawn independently and identically distributed
(iid) according to some probability distribution f(θ) and that this distribution
is known to all agents.

Each agent can take actions by reporting some θ̂i ∈ Θ, and we will utilize
a quasi-linear utility model over the course of this paper. In other words, the
utility for each agent, parametrized by their type θi, depends on the sequence
of outcomes o and some payment p; i.e. ui(o, p; θi) = vi(o) − p. Together the
set of agents I, utility functions ui, and types θ ∈ Θn (for n agents) defines an
“online” Bayesian game. The problem of online MD is then to make decisions
ot and require payments pi from each agent in order to ensure some desired
properties occur in an equilibrium of the induced Bayesian game (e.g. budget
balance, efficiency, etc.).

Using this representation it is tempting to view this problem as just another
form of classical MD in which each agent declares their type θ̂i, makes payment
pi, and the mechanism decides on some set of outcomes o = (o1, . . . , oT ). This
is not the case for two major reasons that arise because the mechanism must
function online. The simplest reason is that each decision ot must be made
before any outcomes can be chosen at time t′ > t. The more difficult reason is
that the mechanism must choose outcome ot only having seen the declarations
made by agents that have already arrived, i.e. all i ∈ I for which ai ≤ t. This
distinction is slightly obscured by the notational use of θ ∈ Θn, which seems to
imply that we know of all agents ahead of time. This is just used for notational
convenience, however, and the mechanism must not rely on any such assumption
(outside of distributional assumptions via f(θ)).

Example 1. An example introduced by Friedman and Parkes [3] involves the
pricing of WiFi at Starbucks in order to maximize the social welfare of all users.
Agents announce their arrival time and how long they will be using the service,
as well as their valuation for this time. The wireless bandwidth is limited and

2



as a result the mechanism must decide which users to allow onto the network
and what prices to charge these users.

Example 2. Consider an auction setting in which k goods are to be sold over
some time period. Agents arrive at the auction one-by-one and place a bid b̂i

for some quantity of the goods1. The mechanism must then decide whether to
accept the bid before moving on to the next bid (from another agent).

These two examples encompass a number of interesting settings, and in fact
the auction setting can be seen as a generalization of the of which can actually
be seen as a generalization of the second. In fact Example 2 is a restriction
of Example 1 where only one agent is allowed to arrive at each time-step and
each agent departs after the same time-step. In Section 4 we will introduce a
truthful mechanism that is able to make allocations for the WiFi example that
maximize the social welfare of all agents.

3 Lying strategically

As in classical mechanism design agents interacting with an online mechanism
have the ability to lie in order to improve their expected utility under the induced
game. In the online setting agents can also misreport their arrival or departure
times strategically. For instance, in the WiFi allocation mechanism of Example 1
agents can delay reporting their arrival time in the hopes that other agents leave
and the price drops. We further see that agents cannot declare an arrival time
âi < ai, since agents cannot make declarations before their arrival.

In the online auction setting (i.e. Example 2) Lavi and Nisan utilize a notion
of supply curves in order to induce truthfulness. A supply curve is some function
p̃i(k) that is fixed before receiving a bid bi(k) from agent i. Here p̃i(k) denotes
the marginal payment for the kth item, and bi(k) the agent’s marginal valuation
for that item (as long as i is reporting truthfully). Since we have assumed that
agents arrive one-by-one, i denotes both the agent and the time-increment.
Given this fixed price, agents will purchase ki items at price pi such that

ki = arg max
q

∑q

j=1
(bi(j) − p̃i(j)), pi =

∑k

j=1
p̃i(j).

If we require that the marginal price for each additional item does not decrease
between iterations, we can see that delaying an agent’s arrival time will be
weakly worse for the agent since the price will never decrease. Agents can do
no better lying about their valuation as well, since the price does not depend
on this valuation. The sole remaining problem is to choose p̃i, and this will
generally be done in order to maximize the social efficiency or revenue of the
seller. (Refer to the cited paper for more details.)

1Lavi and Nisan assume in [5] that this bid is some arbitrary function of k such that the
marginal utility for each additional item is non-increasing. In this way each agent can bid on
all available items.

3



In general problems of online MD, however, there are multiple agents arriving
at each time-step where each agent will interact with the mechanism for a time
period consisting of di−ai. We cannot just assume that every agent arrives and
departs on the same time step. Further, this allows the agent to lie about their
departure time, which the previously discussed notion of supply-curves does not
take into account.

While this greatly complicates our discussion of online mechanisms, we can
instead restrict ourselves to direct-revelation incentive-compatible (truthful) on-
line mechanisms. A direct-revelation online mechanism is one in which, as noted
earlier, the only actions available to an agent are in announcing θ̂i ∈ Θ where
θ̂i = (âi, d̂i, v̂i). A truthful online mechanism is thus straightforward: one in
which the agent immediately announces his/her type upon arrival. This relies
upon an online variation of the Revelation Principle as noted in [3].

Theorem 1. If a dominant-strategy or Bayes-Nash equilibrium of some social

choice function F can be implemented by some online mechanism M, then F

can be truthfully implemented by some direct-revelation online mechanism M′.

The proof of this theorem follows the standard proof of the Revelation Prin-
ciple in which the mechanism M′ will optimally lie for each agent i when given
the agent’s true type. The next section will describe in more detail one partic-
ular truthful direct mechanisms in the online domain.

4 Online mechanisms as MDPs

In the last section we briefly described a particular mechanism for online auc-
tions; in this section we will describe a mechanism applied to the more general
domain of online MD. In particular, we will look at a formulation introduced by
Parkes and Singh in [8] that views the computation performed by the mechanism
as a Markov decision process (MDP).

An MDP comes equipped with a state space describing the state of the world
at any point in time, a set of actions which can be taken from the current state,
and a reward function which maps from state/action pairs into some real-valued
reward. We also have a stochastic transition model which gives the probability
of transitioning to some state xt+1 by taking some action at from state xt. This
formalism is usually used as a decision process for a single-agent acting in some
noisy environment, and the solution to an MDP is a deterministic policy π which
tells us which action to take from each state.

If we ignore for the moment incentive issues among agents we can formulate
an MDP whose state space represents the history of the online mechanism and
whose actions are the decisions or outcomes chosen by the mechanism (i.e. the
center). We are then left to define the reward function. For the rest of this
paper we will assume a reward function that is constructed such that the optimal
policy will maximize the social welfare of all agents. This need not be the case
however, and other interesting options might be a reward function that leads to
a so-called “optimal” mechanism which maximizes the mechanism’s revenue.

4



Following the notation of [8] we will denote the state of the MDP at time
t as ht = (θ≤t, o<t), the history of all reported types and all decisions made
up to time t. Building upon the notation introduced in Section 2, we denote
the outcomes possible in state ht as Ot and all possible states at time t as
Ht; this allows us to define the full state space H =

⋃

t Ht. We can now
introduce the state-transition model, a probability distribution P (ht+1 |ht, ot).
This distribution can be obtained using the type distribution f(θ), in particular
by restricting this distribution to types θi such that ai = t+1 and re-normalizing.

Before defining the reward function, we will let Ri(ht, ot) = vi(o≤t)−vi(o<t)
denote the marginal valuation of agent i attained when the mechanism makes de-
cision ot. We can then define the MDP reward function R(ht, ot) =

∑

i Ri(ht, ot).
Thus the rewards for this MDP directly align with the social welfare of all agents
up to time t, bearing in mind that this is for the moment assuming that all agents
are reporting their types truthfully.

The solution to this MDP is some policy π = (π1, . . . , πT ) such that each
sub-policy πt : Ht → Ot determines which outcome to choose given the agents
currently interacting with the mechanism. This policy induces a value function
V π(ht) which represents the expected value of being in state ht and choosing
outcomes according to π, i.e.

V π(ht) = Eπ[R(ht, π(ht)) + · · · + R(hT , π(hT ))] .

The optimal value function V ∗ is one that maximizes the expected return for
every state in H . We can first compute V ∗(h) = maxo∈OT

R(h, o) for every state
h ∈ HT occurring at the last time instant. Given the value function computed
for all h′ ∈ Ht+1 we can utilize the recursion

V ∗(h) = max
o∈Ot

{

R(h, o) +
∑

h′∈Ht+1
P (h′ |h, o)V ∗(h′)

}

for all h ∈ Ht. This recursion is known as the value iteration algorithm, and
has time-complexity polynomial in the size of the MDP and the maximum time-
period T (see [13]). Finally, we can see that the optimal value function V ∗ is
induced by the optimal policy π∗, where we can rewrite the above recurrence
such that for all h ∈ Ht

π∗(h) = arg max
o∈Ot

{

R(h, o) +
∑

h′∈Ht+1
P (h′ |h, o)V ∗(h′)

}

. (1)

It is well known in the reinforcement learning literature (e.g. [11, 13]) that a
deterministic optimal policy always exists for any MDP.

One thing that we haven’t mentioned, though, are the payments pi that each
agent is required to pay. The above policy or sequence of decision functions
utilized by the mechanism have been calculated assuming that each agent is
truthfully reporting their type θ̂i = θi

4.1 Delayed payments in online mechanisms

Friedman and Parkes [3] introduced a direct online variant of the Vickrey-Clarke-
Groves (VCG) mechanism that brings truth telling into an equilibrium of the

5



induced game. This delayed VCG mechanism was later extended to the previ-
ously discussed MDP framework by Parkes and Singh [8], and it is this notation
that we will follow most closely. The mechanism MD = (Θ, π, pD) chooses
some sequence of outcomes o = (o1, . . . , oT ) such that ot = π(ht) for some his-
tory h ∈ H . The decision-policy is defined as in (1), where again agents are
assumed to be reporting truthfully. Payments of

pD
i (θ̂) =

{

R̃(θ̂−i) − R̃(θ̂)
}

− R̃i(θ̂)

are then collected from each agent i, but this collection is delayed until the final
time period T . Here θ̂−i denotes the reported types of all agents except i and
R̃ denotes the total reported social welfare over all involved agents over all time
periods.

We can now show that truth-telling is a Bayes-Nash equilibrium of the in-
duced game. Assume that all other agents report their valuations truthfully
while agent i reports some type θ̂i. Let θ>i denote all agents who arrive strictly
later than agent i. Here θ>i is treated as a random variable when the decision
is made, because at this point in the decision process those agents have not yet
arrived and reported their types. We can then write the expected utility for
agent i as

Eθ>i

[

vi(π(θ−i, θ̂i)) −
∑

j 6=iR̃j(θ−i, θ̂i) + R̃(θ−i)
]

.

After some algebraic manipulation we can see that this is similar to the standard
VCG mechanism, and agent i is paying his expected social cost. This is not
dominant strategy truthful because we must still assume that all agents are
reporting truthfully (i.e. it’s a Nash equilibrium of the Bayesian game), and we
must also take into account the expectation under later agents. Finally, we must
also assume that the policy π can simulate delaying reporting by the agent, in
other words reporting some âi > ai. This is not terribly restrictive though, in
that the mechanism will make the best expected decision for the agent in terms
of utility, whereby no decisions concerning the agent will be made if delaying
would be more profitable.

There are two final problems with this mechanism. The first of which is that
it is not readily apparent that the mechanism is individual-rational. It seems
important that no agent is made worse off by taking part in the mechanism, at
least under expectation. In order to show this we will make one other assumption
about the induced MDP, namely that it exhibits value-monotonicity, i.e. for all
history states ht and some additional agent i it holds that

V ∗(ht(θ̂ ∪ θi)) − V ∗(ht(θ̂)) ≥ 0.

In other words, it must hold that the addition of one more player to the induced
MDP will make the optimal value function no worse. If this holds we can see
that the expected utility to agent i can be calculated as

Eθ>i

[

R̃(θ) − R(θ−i)
]

≥ 0

6



and as a result the mechanism is ex interim individual rational.
The final problem with this mechanism is that it is not strictly an online

algorithm. Decisions are made online, but agents are required to wait until the
final time period T in order to make payments. In order to remedy this short-
coming Singh et al. [8] introduced an online VCG mechanism Mo = (Θ, π, po)
which calculates prices online. Each agent makes payments

po
i (θ̂) =

{

Ṽ π(hâi
(θ̂−i)) − Ṽ π(hâi

(θ̂))
}

− R̃i
≤mi

(θ̂),

where Ri
≤mi

represents the social welfare of agent i for time periods up to mi,
the commitment period for agent i. The commitment period is some time-step
mi ∈ [ai, di] at which point the mechanism makes a decision affecting agent
i. In the WiFi mechanism of Example 1 this might be the point at which the
mechanism allocates bandwidth to the agent. This allows for the mechanism to
simulate a delayed announcement for the agent, as noted earlier.

Although we use the notation here for the MDP value function, this is again
a variant of the VCG mechanism wherein agents are paying their expected
social cost. Here however the calculation can be done only with regards to
those agents that can be affected by i’s existence, i.e. those arriving before mi.
In order to save space the complete proof is omitted here, but this mechanism
can be shown to be Bayes-Nash incentive compatible and ex-post individual
rational. Interested readers are referred2 to [8].

5 Conclusion and pointers for further reading

Online mechanism design presents an important generalization of classic mech-
anism design that allows for sensitivity to timing constraints and dynamically
arriving agents. This is becoming especially important as many more electronic
commerce applications spring up, including trade between non-human, or soft-
ware agents [12, 2]. Another key application involves the negotiation of shared
computing or network resources, especially those negotiated without human
intervention [7, 4].

In this paper I’ve presented a very abbreviated overview of online mecha-
nism design, and a slightly more in-depth look at the use of MDPs in making
these online decisions. One topic that I was unable to touch on deals with the
complexity of these models. In many situations the use of a history vector h

as state in the induced MDP can be avoided using some sufficient statistics
of this history. Even when this can be done, as the time T and MDP size in-
crease the value-iteration algorithm becomes increasing more complex. For very
large T , or infinite T with a discount factor3, it may be more efficient to uti-
lize the policy-iteration algorithm. A tight worst-case bound on the complexity
of policy-iteration is still an open problem, however—see [13] for more details.

2It should be noted that the referenced work utilizes a negative payment, or a payment
made to each agent. As a result the payments here differ by a factor of -1.

3The discount factor must be the same for all agents in order for this to work.

7



Another interesting approach taken by Singh et al. [9] attempts to reduce the
complexity of the MDP-based approach by utilizing an ε-Bayes-Nash equilib-
rium. This uses the assumption that agents are indifferent between valuation
changes less than ε.

Other approaches have extended upon the basic model presented in this
overview. Work by Porter [10] applies online mechanism to the problem of
real-time scheduling of computational resources. Specifically this paper looks
at problems with continuous-valued time-spaces. Bredin and Parks [1] also
apply this analysis to online double-auctions which have more applications to
buyer/seller markets. Finally, a recent paper by Lavi and Nisan [6] looks at on-
line auctions for expiring goods, which presents another interesting application
of the time dynamics touched on here.

References

[1] J. Bredin and D. Parkes. Models for truthful online double auctions. In Proceed-
ings of the 21st Conference on Uncertainty in Artificial Intelligence (UAI’2005),
pages 50–59, 2005.

[2] E. Ephrati and J. Rosenschein. The Clarke tax as a consensus mechanism among
automated agents. In In Proc.. of the National Conference on Artificial Intelli-
gence, 1991.

[3] E. Friedman and D. Parkes. Pricing WiFi at Starbucks—issues in online mecha-
nism design. In Proc. Fourth ACM Conf. on Electronic Commerce, 2003.

[4] Y. A. Korilis and A. A. Lazar. On the existence of equilibria in noncooperative
optimal flow control. Journal of the ACM, 42(3):584–613, 1995.

[5] R. Lavi and N. Nisan. Competitive analysis of online auctions. In Proc. ACM
Conference on Electronic Commerce, 2000.

[6] R. Lavi and N. Nisan. Online ascending auctions for gradually expiring items.
Technical report, The Hebrew University, 2004.

[7] A. Lazar and N. Semret. The progressive second price auction mechanism for
network resource sharing, July 1998. In 8th Int. Symp. on Dynamic Games and
Applications, Maastricht.

[8] D. Parkes and S. Singh. An MDP-based approach to online mechanism design.
In Proc. of Neural Information Processing Systems, volume 17, 2003.

[9] D. Parkes, S. Singh, and D. Yanovsky. Approximately efficient online mechanism
design. In Proc. 18th Annual Conf. on Neural Information Processing Systems,
2004.

[10] R. Porter. Mechanism design for online real-time scheduling. In In Proc. of the
ACM Conference on Electronic Commerce, 2004.

[11] M. L. Puterman. Markov decision processes: discrete stochastic dynamic pro-
gramming. John Wiley & Sons, New York, 1994.

[12] J. Rosenschein and G. Zlotkin. Rules of encounter: designing conventions for
automated negotiation among computers. MIT Press, 1994.

[13] R. Sutton and A. Barto. Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA, 1998.

8


