
1 

 

 

Use Complexity to Avoid Vote Manipulation 

 

Minghao Lu 

Computer Science Department 

University of British Columbia 

squallmh@cs.ubc.ca 

 

December 27, 2006 

 

 

Abstract 

Aggregating the preferences of self-interested agents is a key problem 

for multiagent systems. A common method for doing so is to vote over the 

candidates. Unfortunately, the Gibbard-Satterthwaite’s theorem shows that 

when there are more than three candidates, every nondictorial voting 

scheme for choosing the winning candidate is manipulable (in other words, 

there exist situations so that some voter would benefit from reporting 

his/her preference untruthfully). Recent research has had some limited 

success on making the voting schemes computationally hard to manipulate. 

However, after some simple modifications, most common voting protocols 

can make the manipulation NP-hard, #P-hard or even PSPACE-hard in 

worst-case analysis. In the paper, we will examine the computational 

complexity of some basic protocols and their modifications on vote 

manipulation. Also we will have some average-case complexity analysis.    

 

 

1. Introduction 

In multiagent system, it is of crucial importance to be able to aggregate the preferences of 

multiple agents in order to achieve their joint goal even though their individual options may vary 

over the alternatives (candidates). Voting is a general method of reconciling these differences. 

One fundamental problem encountered by all voting schemes is that of manipulation by the 

voters. An agent is said to vote strategically if he does not report his/her true preference in order 

to obtain a more beneficial outcome. For example, an agent has a preference order a>b>c, but 

somehow he knows that a could not win and b and c are close. The agent is better off to choose 

b as his favorite candidate. Thus, we can see from the example that a socially undesirable 

outcome may arise if some agents report insincerely.  

In fact, a negative result has already been shown by Gibbard-Satterthwaite (Gibbard 1973; 

Satterthwaite 1975) that if there are three or more candidates, any nondictatorial voting scheme 



2 

 

for choosing the winning candidate is vulnerable to manipulation.  

In the context of computer software agents, it makes sense to use computational complexity to 

scale the manipulation. Such complexity can be used as a guideline for voters to examine if 

manipulation is feasible or not. Hence, designing a protocol where manipulation is 

computationally difficult is highly desired in multiagent settings. 

The rest part of the paper is organized as follows. Section 2 is notations and definitions. Section 3 

introduces some common voting protocols’ complexities in both constructive and destructive 

manipulations. In section 4 we will examine some modified version of protocols and their 

complexities. Section 5 is about average-case analysis. Section 6 is the conclusion. 

 

2. Preliminaries and Definitions 

Before we move on to the main part, let us make some definitions and reviews of protocols that 

we will investigate. 

 

2.1 Voting protocols 

Definition 1: Election 

An election consists m candidates and n voters (possibly weighted). Denote the set of all 

candidates � � ���, … , ��	  and the set of all voters 
 � ���, … , ��	 . The set of all 

permutations of C is denoted by ∏���. Most of our complexity results are based on m and n, i.e. 

“polynomial time” means “polynomial in m and n”. 

 

Remark1: In the case that a vote are weighted (say k), such vote is defined by the social welfare 

functions W as k identical unweighted votes. Whenever points are defined, the candidate with 

the most points wins. 

 

� Plurality: A candidate receives 1 point for every voter who ranks it the first; 

� Borda: For each voter, a candidate receives m-1 points if the voter ranks it the first, m-2 if 

the voter ranks it the second, and so on,…, 0 if the voter ranks it the last; 

� Copeland (aka. Tournament): Simulate a pairwise election for each pair of candidates in 

turn (a candidate wins in a pairwise election if it is preferred over the other one by more 

than half of the voters). A candidate obtains 1 point if it wins over an opponent, 0 points if it 

draws, and -1 point if it loses. 

� Maxmin: A candidate’s score in a pairwise election is the number of voters that prefer it 

over the other. A candidate’s number of points is the lowest score it gets in any pairwise 

election. 

� Single Transferable Vote (STV): Winner determination process proceeds in rounds. In each 

round, a candidate’s score is the number of voters that rank it highest among the remaining 

candidates; the candidate with the lowest score drops out. The last remaining candidate 

wins. (A vote transfers from its top remaining candidate to the next highest remaining 

candidate when the former drops out). 

� Cup (aka. Binary Protocol): The winner determination process consists of �log �� rounds. 

In each round, the candidates are paired. If there is an odd number of candidates, one of 

them gets a bye. The candidate that wins the pairwise election over the opponent (or got a 



3 

 

bye) advances to the next round.  

The Cup protocol requires a method for scheduling candidates. For example, such 

assignment can be given ex-ante (prior to votes are elicited) or we can randomize over the 

assignment after the votes have been submitted (Randomized Cup). 

 

2.2 Manipulation 

The computational problem of manipulation has been defined in many ways. In general, the 

typical definition follows that given the nonmanipulator’s votes, can the manipulator(s) submit 

their votes in a way so that one candidate from a given set of preferred candidates wins?  

Definition 2: Manipulation 

We say that a voter ��  can manipulate a protocol P if there ���
� � ∏��� such that for some 

value of �� � ∏���, � � 1, … , �, we have 

� ����, … , ��� � �; 

� ����, … , ��!�, ��
�, ��"�, … , ��� � �� # � 

� ��  ranks �� above �. 

We say that ��  manipulates P constructively if ��  ranks �� first (causing a candidate to win) 

and destructively (causing a candidate to not win) otherwise. 

 

3. Complexity of Manipulating Existing Protocols 

Results (Bartholdi, Tovey, & Trick 1989; Bartholdi & Orlin 1991) have already shown that high 

complexity depends on both the number of candidates and the number of voters being 

unbounded. However, Conitzer and Sandholm have shown that even with small number 

(constant) of candidates, high complexity can also be obtained. 

 

3.1 Unweighted voters 

Proposition (Conitzer and Sandholm): Suppose there is a constant number of candidates and 

evaluating the result of a particular combination of votes by a coalition is in �(polynomial time), 

if there is only one voter in the coalition, or if the voters are unweighted, the manipulation 

problem is in �. (This holds for all the different variants of the manipulation problem) 

 

This negative result leaves us two choices:  

� We may examine the problem when voters have different weights. 

� We may ask whether there are reasonable settings where evaluating a manipulation is 

NP-hard. (uncertainty about other voters) 

 

3.2 Voters with different weights 

Definition 3: Constructive-Coalitional-Weighted-Manipulation (CCWM) 

We are given a set of weighted votes S, the weights for a set of votes T which are still open, and a 

preferred candidate p. We are asked whether there is a way to cast the votes in T so that p wins 

the election. 

 

 

 



4 

 

Table 1 shows that most basic protocols (except Cup with ex-ante schedule) are with high 

complexity to manipulate under constructive manipulation. This is because it is easy to 

manipulate if the Cup protocol’s schedule is known in advance. However, if we add 

randomization into the Cup protocol, when number of candidates is greater than 7, the Cup 

protocol becomes NP-complete.  

 

Protocols Computational Complexity Number of Candidates 

Plurality P Any 

Borda NP-complete $3 

Copeland NP-complete $4 

Maxmin NP-complete $4 

STV NP-complete $3 

Cup(ex-ante) P Any 

Cup(randomized) NP-complete $7 

 

 

 

Definition 4: Destructive-Coalitional-Weighted-Manipulation (DCWM) 

We are given a set of weighted votes S, the weights for a set of votes T which are still open, and a 

preferred candidate h. We are asked whether there is a way to cast the votes in T so that h does 

not win the election. 

 

From table 2, we can see that unlike constructive case, the basic protocols (except STV) under 

destructive manipulation are extremely easier to manipulate. Thus, STV is preferable to all other 

protocols under destructive manipulation. 

 

Protocols Computational Complexity Number of Candidates 

Plurality P Any 

Borda P Any 

Copeland P Any 

Maxmin P Any 

STV NP-complete $4 

 

 

 

 

3.3 Uncertainty about others’ votes 

Conitzer and Sandholm (2002) have shown that if the protocol is NP-hard under constructive 

manipulation, it is also NP-hard under uncertain votes for both weighted and unweighted voters. 

In fact, even evaluating a candidate’s winning probability is hard when there is uncertainty about 

the votes (even when there is no manipulator). 

 

 

 

Table 1: Complexity under Constructive Manipulation 

Table 2: Complexity under Destructive Manipulation 



5 

 

4. Constructing New Protocols with High Complexity to Manipulate 

We have studied the complexity of manipulating existing voting protocols. However, a further 

step has been made by many researchers to design new protocols that are especially hard to 

manipulate. We will discuss two main approaches:  

� Conitzer and Sandholm (2003) proposed that adding a preround before applying the actual 

voting protocol can make typical protocols hard to manipulate.  

� Elkind and Lipmaa (2005) described a general technique for obtaining a new 

manipulation-resistant protocol by combining two or more base protocols (hybrid).   

 

4.1 Adding a preround 

Rather than designing new protocol from scratch, Conitzer and Sandholm showed how to tweak 

existing protocols to make manipulation computationally much harder while leaving much of the 

original nature of the protocol intact. The type of tweak they used is to add a preround. 

 

Definition 5: Preround 

Given a protocol P, the new protocol obtained by adding a preround to it proceeds as follows: 

1. The candidates are paired. If there is an odd number of candidates, one candidate gets a 

bye. 

2. In each pairing of two candidates, the candidate losing the pairwise election between the 

two is eliminated. A candidate with a bye is never eliminated. 

3. On the remaining candidates, P is executed to produce a winner. For this, the implicit votes 

over the remaining candidates are used. (For example, if a voter voted a>b>c, and b was 

eliminated, the voter’s implicit vote is a>c.) 

 

The preround pairing is also known as schedule and we have three different scheduling ways 

according to when we publish the schedule. 

 

� Deterministic preround (DPRE): the schedule is decided and known to all voters before the 

votes are collected. (ex-ante) 

� Randomized preround (RPRE): the schedule is drawn completely randomly after the votes 

are collected. (ex-post) 

� Interleaved preround (IPRE): the votes are elicited incrementally and the elicitation process 

is interleaved with the scheduling-and-publishing process which is also done randomly 

(ex-interim)  

 

Preround Type Computational Complexity 

DPRE NP-hard 

RPRE #P-hard 

IPRE PAPACE-hard 

 

 

 

 

Table 3: Manipulation Complexity after Adding a Preround  



6 

 

Table 3 shows that even with a very simple tweak (adding a preround), the original protocol 

becomes NP-hard, #P-hard or even PSPACE-hard to manipulate depending on different 

scheduling methods. 

 

The advantage of this method is that it preserves some of the properties of the original protocol. 

(e.g.: If the original protocol is Condorcet, the tweak is also Condorcet.)  

However, some other desirable features are lost during the elimination process (preround). 

Dropping half of the candidates is generally not a good idea and is likely to alter the outcome by 

the original protocol. 

 

4.2 Hybrid voting protocols 

It can be observed that the preround phase can be viewed as Binary Cup (BC) protocol. While BC 

itself is not hard to manipulate, the result shows that combining BC with other protocol ends up 

with manipulation-free schemes. Elkind and Lipmaa generalized this idea by showing that this 

combination is not unique to BC. 

 

Definition 6: Hybrid Protocol 

A hybrid protocol Hyb(%& , '� consists of two phases. Suppose that the voters’ preference lists 

are described by the n-tuple ���, … , ���. In the first phase, the protocol executes k steps of 

%���, … , ���; suppose that S is the set of candidates not eliminated in the first phase. In the 

second phase, the protocol applies Y to ���|), … , ��|)�, i.e., the preference lists restricted to 

the remaining set S of candidates. 

 

It is obvious that we can extend this definition to more than two protocols (phases) 

Hyb*%&+

���, %&,

�-�, … , %&.

�/�, '0. Also hybrid of a protocol with itself is allowed. 

 

Hybrid Protocols X Y Complexity 

Hyb()1
& , '� / {Plurality,Borda,Maxmin,Cup,STV} NP-hard 

Hyb�%& , )1
� {Plurality,Borda,Maxmin,Cup} / NP-hard 

Hyb�%& , �23452�67� {Borda,Maxmin} / NP-hard 

Hyb�%& , 894:5� {Borda,Maxmin} / NP-hard 

Hyb��23452�67& , '� / {Borda,Maxmin,Cup,Plurality} P 

 

 

 

 

The advantages of this method are quite obvious. Firstly, it works for a wide range of protocols. 

Secondly, a hybrid of two protocols preserves many of their own properties and sometime may 

have a best combination of both. Thirdly, some easy-to-manipulate protocols after hybridization 

become manipulation-resistance. This method is generally an extension of Conitzer and 

Sandholm’s work. 

On the other hand, as table 4 shows, hybridization does not always result in hard-to-manipulate 

protocols. (e.g. Plurality) 

Table 4: Manipulation Complexity of Hybrid Protocols  



7 

 

5. Average-Case Analysis 

All of the above results have one flaw in common that they calculated computational complexity 

only in worst-case hardness. In other words, the results showed that it is unlikely to find an 

efficient algorithm that determines a beneficial manipulation in all instances where a beneficial 

manipulation exists. But this does not mean that such efficient manipulation does not exist. 

Moreover, if the beneficial manipulation does exist, it may still be the cast that most instances of 

the problem are easy to manipulate.  

A solution to this problem would be to find a rule that is hard to manipulate in all instances. Sadly, 

it is very difficult to show that a certain problem is average-case complete. There have been 

many attempts to design a rule under which finding a beneficial manipulation is hard on average, 

but they have failed. However, there are several recent attempts. 

 

5.1 New approaches on average-case analysis 

One is by Procaccia and Rosenschein (2006). Basically, they use Junda distribution over the 

instances they analyze and show that Scoring protocols (e.g.: Borda) are susceptible to 

manipulation on average when number of candidates is constant. This is a new starting point of 

the area for average-case manipulation complexity analysis. But it is not complete, even the 

definition of Junda distribution is debatable. The authors also point out that defining natural 

criteria where a manipulation is hard in average-case is of great importance.   

  

Remark2: A protocol is susceptible to manipulation when there is a polynomial time algorithm 

that can usually (average-case) manipulate it. 

 

Another discouraging result which states that there does not exist a voting rule that is usually 

(average-case) hard to manipulate is by Conitzer and Sandholm (2006). Unlike Procaccia and 

Rosenschein’s claim, this result does not require any restriction on the voting rule, number of 

candidates or distribution over instances. The result generally shows that a voting rule is not 

usually hard to manipulate under some properties (such as weak monotonicity). The authors also 

give approaches for potentially circumventing this impossibility result. 

 

6. Conclusion 

In multiagent systems, different agents have various preferences over the candidates. It is 

frequently desired to aggregate these preferences so as to achieve a socially beneficial result. 

Unfortunately, Gibbard-Satterthwaite theorem shows that all voting protocols are manipulable 

when there are more than two candidates. To circumvent this problem, recent research has been 

seeking whether there is a way to make beneficial manipulation computationally hard. As we 

have showed in the paper, many protocols can be NP-hard to manipulate with the properties 

such that the voters are differently weighted, adding randomness, or uncertainties about others’ 

votes. Moreover, after some simple modifications (adding a preround or hybridization) to the 

original protocols, the resulting protocols can also achieve NP-hardness (or even 

PAPACE-hardness). However, these results are all in worst-case sense. In the last section, we 

analyzed the average-case complexity. Surprisingly, Conitzer and Sandholm’s result shows that it 



8 

 

is in fact impossible to design a protocol which is simultaneously required to satisfy another 

property: a large portion of the instances are both weakly monotone and allow the manipulators 

to make either of exactly two candidates win.  

Some future work can be made on how to circumventing this impossibility result and how to 

define natural criteria where a manipulation is hard in average-case since the regular 

average-case analysis is not suitable here. 

 

References 

1) John J. Bartholdi, III and James B. Orlin, “Single Transferable Vote Resists Strategic Voting” 

Social Choice and Welfare p.341-354, Nov 1990, revised April 2003 

2) Vincent Conitzer and Tumoas Sondheim, “Complexity of Manipulating Elections with Few 

Candidates”. In Proceedings of the National Conference on Artificial Intelligence (AAAI), 

p314-319, 2002. 

3) Vincent Conitzer and Tuomas Sondheim, “Universal Voting Protocol Tweaks to Make 

Manipulation Hard”. In Proceedings of the National Conference on Artificial Intelligence 

(AAAI), p.201-214, 2003. 

4) Edith Elkind and Helger Lipmaa, “Small Coalitions Cannot Manipulate Voting”, Financial 

Cryptography and Data Security 2005, volume 3570 of Lecture Notes in Computer Science, 

p.285-297, 2005.  

5) Edith Elkind and Helger Lipmaa, “Hybrid Voting Protocols and Hardness of Manipulation” 

The 16
th

 Annual International Symposium on Algorithms and Computation, ISAAC 2005, 

volume 3827 of Lecture Notes in Computer Science, p206-215, Sanya, Hainan, China, Dec 

2005 

6) Ariel D. Procaccia and Jeffrey S. Rosenschein, “Junta Distributions and the Average-Case 

Complexity of Manipulating Elections”, The 5
th

 International Joint Conference on 

Autonomous Agents and Multiagent Systems, Hakodate, Japan, May 2006. 

7) Vincent Contizer and Tuomas Sandholm, “Nonexistence of Voting Rules That Are Usually 

Hard to Manipulate”, AAAI, 2006 


