Extensive Form Games

CPSC 532A Lecture 9

October 10, 2006

Extensive Form Games

CPSC 532A Lecture 9, Slide 1

æ

・ロン ・団 と ・ 国 と ・ 国 と

Lecture Overview

Recap

Perfect-Information Extensive-Form Games

Subgame Perfection

æ

- 4 回 2 - 4 □ 2 - 4 □

Extensive Form Games

Formal definition

- (Ω, π) is a finite probability space
- for every agent *i*, divide Ω into a set of partitions $\mathbf{P_i} = \{P_{i,1}, \dots, P_{i,k_i}\}$
 - ► For all i, $\bigcup_{j=1}^{k_i} P_{i,j} = \Omega$ and $j \neq j'$ implies that $P_{i,j} \cap P_{i,j'} = \emptyset$.
 - We'll use the partitions to indicate values of Ω that are indistinguishable for i.
- (Pure) strategy: $\sigma_i: \Omega \to A_i$
 - ► To capture our intuition about the partitions, we need the property that $(\omega, \omega' \in \mathbf{P}_i)$ implies that $\sigma_i(\omega) = \sigma_i(\omega')$

Definition

 $(\Omega,\pi,\mathcal{P},\sigma)\text{, is a correlated equilibrium when }$

$$\sum_{\omega \in \Omega} \pi(\omega) u_i\left(\sigma_i(\omega), \sigma_{-i}(\omega)\right) \ge \sum_{\omega \in \Omega} \pi(\omega) u_i\left(\sigma'_i(\omega), \sigma_{-i}(\omega)\right).$$

御 と くぼ と くぼ と … ほ

Other remarks

- For every Nash equilibrium σ* of a game G = (N, A, u) there exists a correlated equilibrium (Ω, π, P, σ) under which each agent i ∈ N plays each action a ∈ A_i with probability σ^{*}_i(a).
- Not every correlated equilibrium is equivalent to a Nash equilibrium
 - thus, correlated equilibrium is a weaker notion than Nash
- Any convex combination of the payoffs achievable under correlated equilibria is itself realizable under a correlated equilibrium

< 目→ < 目→ ---

Computing CE

$$\sum_{\substack{a \in A \mid a_i \in a}} p(a)u_i(a) \ge \sum_{\substack{a \in A \mid a'_i \in a}} p(a)u_i(a'_i, a_{-i}) \quad \forall i \in N, \, \forall a_i, a'_i \in A_i$$

$$p(a) \ge 0 \qquad \qquad \forall a \in A$$

$$\sum_{a \in A} p(a) = 1$$

• variables: p(a); constants: $u_i(a)$

æ

- 4 回 2 - 4 □ 2 - 4 □

Computing CE

$$\sum_{\substack{a \in A \mid a_i \in a}} p(a)u_i(a) \ge \sum_{\substack{a \in A \mid a'_i \in a}} p(a)u_i(a'_i, a_{-i}) \quad \forall i \in N, \, \forall a_i, a'_i \in A_i$$

$$p(a) \ge 0 \qquad \qquad \forall a \in A$$

$$\sum_{\substack{a \in A}} p(a) = 1$$

- variables: p(a); constants: $u_i(a)$
- we could find the social-welfare maximizing CE by adding an objective function

maximize:
$$\sum_{a \in A} p(a) \sum_{i \in N} u_i(a).$$

★ 문 ► ★ 문 ►

Lecture Overview

Recap

Perfect-Information Extensive-Form Games

Subgame Perfection

CPSC 532A Lecture 9, Slide 6

æ

イロト イヨト イヨト イヨト

Introduction

- The normal form game representation does not incorporate any notion of sequence, or time, of the actions of the players
- The extensive form is an alternative representation that makes the temporal structure explicit.
- Two variants:
 - perfect information extensive-form games
 - imperfect-information extensive-form games

3 × 4 3 ×

Definition

A (finite) perfect-information game (in extensive form) is a tuple $G=(N,A,H,Z,\chi,\rho,\sigma,u)$, where

- N is a set of n players
- $A = (A_1, \ldots, A_n)$ is a set of actions for each player
- H is a set of non-terminal choice nodes
- Z is a set of terminal nodes, disjoint from H
- $\chi: H \to 2^A$ is the action function
 - assigns to each choice node a set of possible actions
- $\rho: H \to N$ is the player function
 - \blacktriangleright assigns to each non-terminal node a player $i \in N$ who chooses an action at that node

Definition

A (finite) perfect-information game (in extensive form) is a tuple $G=(N,A,H,Z,\chi,\rho,\sigma,u)$, where

- $\chi: H \to 2^A$ is the action function
 - assigns to each choice node a set of possible actions
- $\rho: H \to N$ is the player function
 - \blacktriangleright assigns to each non-terminal node a player $i \in N$ who chooses an action at that node
- $\sigma: H \times A \rightarrow H \cup Z$ is the successor function
 - maps a choice node and an action to a new choice node or terminal node such that for all $h_1, h_2 \in H$ and $a_1, a_2 \in A$, if $\sigma(h_1, a_1) = \sigma(h_2, a_2)$ then $h_1 = h_2$ and $a_1 = a_2$
- ▶ $u = (u_1, ..., u_n)$, where $u_i : Z \to \mathbb{R}$ is a utility function for player i on the terminal nodes Z

Note: the choice nodes form a tree, so we can identify a node with its history.

Example: the sharing game

æ

Example: the sharing game

only once.)

Pure Strategies

In the sharing game (splitting 2 coins) how many pure strategies does each player have?

★ 문 ► ★ 문 ►

Pure Strategies

- In the sharing game (splitting 2 coins) how many pure strategies does each player have?
 - player 1: 3; player 2: 8

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Pure Strategies

- In the sharing game (splitting 2 coins) how many pure strategies does each player have?
 - player 1: 3; player 2: 8
- Overall, a pure strategy for a player in a perfect-information game is a complete specification of which deterministic action to take at every node belonging to that player.

Definition

Let $G=(N,A,H,Z,\chi,\rho,\sigma,u)$ be a perfect-information extensive-form game. Then the pure strategies of player i consist of the cross product

$$\underset{h \in H, \rho(h)=i}{\times} \chi(h)$$

マボン イラン イラン 一日

What are the pure strategies for player 2?

What are the pure strategies for player 2?

• $S_2 = \{(C, E); (C, F); (D, E); (D, F)\}$

What are the pure strategies for player 2? • $S_2 = \{(C, E); (C, F); (D, E); (D, F)\}$ What are the pure strategies for player 1?

What are the pure strategies for player 2?

•
$$S_2 = \{(C, E); (C, F); (D, E); (D, F)\}$$

What are the pure strategies for player 1?

•
$$S_1 = \{(B,G); (B,H), (A,G), (A,H)\}$$

► This is true even though, conditional on taking A, the choice between G and H will never have to be made.

Extensive Form Games

Nash Equilibria

Given our new definition of pure strategy, we are able to reuse our old definitions of:

- mixed strategies
- best response
- Nash equilibrium

Theorem

Every perfect information game in extensive form has a PSNE This is easy to see, since the players move sequentially.

In fact, the connection to the normal form is even tighter we can "convert" an extensive-form game into normal form 1 В Α 2 С D Е (3,8)(8,3)(5,5)G Η (2,10)(1,0)

In fact, the connection to the normal form is even tighter we can "convert" an extensive-form game into normal form

	CE	CF	DE	DF
AG	3,8	3, 8	8,3	8,3
AH	3,8	3, 8	8,3	8,3
BG	5, 5	2, 10	5, 5	2, 10
BH	5, 5	1, 0	5, 5	1, 0

In fact, the connection to the normal form is even tighter
 we can "convert" an extensive-form game into normal form

	CE	CF	DE	DF
AG	3,8	3, 8	8,3	8,3
AH	3,8	3, 8	8,3	8,3
BG	5, 5	2, 10	5, 5	2, 10
BH	5, 5	1,0	5, 5	1, 0
	-			

this illustrates the lack of compactness of the normal form

- games aren't always this small
- even here we write down 16 payoff pairs instead of 5

- In fact, the connection to the normal form is even tighter
 - we can "convert" an extensive-form game into normal form

- while we can write any extensive-form game as a NF, we can't do the reverse.
 - e.g., matching pennies cannot be written as a perfect-information extensive form game

1, 0

DF

8,3

8,3

2,10

1, 0

Induced Normal Form

► In fact, the connection to the normal form is even tighter

we can "convert" an extensive-form game into normal form

What are the (three) pure-strategy equilibria?

► In fact, the connection to the normal form is even tighter

we can "convert" an extensive-form game into normal form

	CE	CF	DE	DF
AG	3,8	3,8	8,3	8,3
AH	3,8	3, 8	8,3	8,3
BG	5, 5	2, 10	5, 5	2,10
BH	5, 5	1,0	5, 5	1, 0

What are the (three) pure-strategy equilibria?

$$(A,G), (C,F)$$

$$(A, H), (C, F)$$

 $\bullet (B,H), (C,E)$

► In fact, the connection to the normal form is even tighter

we can "convert" an extensive-form game into normal form

	CE	CF	DE	DF
AG	3,8	3,8	8,3	8,3
AH	3,8	3, 8	8,3	8,3
BG	5, 5	2, 10	5, 5	2,10
BH	5, 5	1,0	5, 5	1, 0

What are the (three) pure-strategy equilibria?

$$(A,G), (C,F)$$

$$(A, H), (C, F)$$

 $\bullet (B,H), (C,E)$

Lecture Overview

Recap

Perfect-Information Extensive-Form Games

Subgame Perfection

CPSC 532A Lecture 9, Slide 14

★ 문 ► ★ 문 ►

< 🗗 🕨

Extensive Form Games

Subgame Perfection

- ► There's something intuitively wrong with the equilibrium (B, H), (C, E)
 - Why would player 1 ever choose to play H if he got to the second choice node?
 - After all, G dominates H for him

Subgame Perfection

- ► There's something intuitively wrong with the equilibrium (B, H), (C, E)
 - Why would player 1 ever choose to play H if he got to the second choice node?
 - After all, G dominates H for him
 - He does it to threaten player 2, to prevent him from choosing *F*, and so gets 5
 - However, this seems like a non-credible threat
 - If player 1 reached his second decision node, would he really follow through and play H?

Formal Definition

- Define subgame of G rooted at h:
 - the restriction of G to the descendents of H.
- ► Define set of subgames of G:
 - subgames of G rooted at nodes in G

- ▶ s is a subgame perfect equilibrium of G iff for any subgame G' of G, the restriction of s to G' is a Nash equilibrium of G'
- Notes:
 - ▶ since G is its own subgame, every SPE is a NE.
 - this definition rules out "non-credible threats"

Back to the Example

Which equilibria from the example are subgame perfect?

Extensive Form Games

▶ < 불 ▶ < 불 ▶ 불 · ⊙ < < CPSC 532A Lecture 9, Slide 17

Back to the Example

- ▶ Which equilibria from the example are subgame perfect?
 - (A,G), (C,F) is subgame perfect
 - (B, H) is an non-credible threat, so (B, H), (C, E) is not subgame perfect
 - (A, H) is also non-credible, even though H is "off-path"