Extensive Form Games

CPSC 532A Lecture 9

October 10, 2006

Lecture Overview

Recap

Perfect-Information Extensive-Form Games

Subgame Perfection

Formal definition

- (Ω, π) is a finite probability space
- for every agent i, divide Ω into a set of partitions $\mathbf{P}_{\mathbf{i}}=\left\{P_{i, 1}, \ldots, P_{i, k_{i}}\right\}$
- For all $i, \bigcup_{j=1}^{k_{i}} P_{i, j}=\Omega$ and $j \neq j^{\prime}$ implies that $P_{i, j} \cap P_{i, j^{\prime}}=\emptyset$.
- We'll use the partitions to indicate values of Ω that are indistinguishable for i.
- (Pure) strategy: $\sigma_{i}: \Omega \rightarrow A_{i}$
- To capture our intuition about the partitions, we need the property that ($\omega, \omega^{\prime} \in \mathbf{P}_{i}$) implies that $\sigma_{i}(\omega)=\sigma_{i}\left(\omega^{\prime}\right)$

Definition

$(\Omega, \pi, \mathcal{P}, \sigma)$, is a correlated equilibrium when

$$
\sum_{\omega \in \Omega} \pi(\omega) u_{i}\left(\sigma_{i}(\omega), \sigma_{-i}(\omega)\right) \geq \sum_{\omega \in \Omega} \pi(\omega) u_{i}\left(\sigma_{i}^{\prime}(\omega), \sigma_{-i}(\omega)\right)
$$

Other remarks

- For every Nash equilibrium σ^{*} of a game $G=(N, A, u)$ there exists a correlated equilibrium $(\Omega, \pi, \mathcal{P}, \sigma)$ under which each agent $i \in N$ plays each action $a \in A_{i}$ with probability $\sigma_{i}^{*}(a)$.
- Not every correlated equilibrium is equivalent to a Nash equilibrium
- thus, correlated equilibrium is a weaker notion than Nash
- Any convex combination of the payoffs achievable under correlated equilibria is itself realizable under a correlated equilibrium

Computing CE

$$
\begin{array}{ll}
p(a) \geq 0 & \forall a \in A \\
\sum_{a \in A} p(a)=1 &
\end{array}
$$

- variables: $p(a)$; constants: $u_{i}(a)$

Computing CE

$$
\begin{array}{ll}
\sum_{a \in A \mid a_{i} \in a} p(a) u_{i}(a) \geq \sum_{a \in A \mid a_{i}^{\prime} \in a} p(a) u_{i}\left(a_{i}^{\prime}, a_{-i}\right) & \forall i \in N, \forall a_{i}, a_{i}^{\prime} \in A_{i} \\
p(a) \geq 0 & \forall a \in A \\
\sum_{a \in A} p(a)=1 &
\end{array}
$$

- variables: $p(a)$; constants: $u_{i}(a)$
- we could find the social-welfare maximizing CE by adding an objective function

$$
\text { maximize: } \quad \sum_{a \in A} p(a) \sum_{i \in N} u_{i}(a)
$$

Lecture Overview

Recap
 Perfect-Information Extensive-Form Games

Subgame Perfection

Introduction

- The normal form game representation does not incorporate any notion of sequence, or time, of the actions of the players
- The extensive form is an alternative representation that makes the temporal structure explicit.
- Two variants:
- perfect information extensive-form games
- imperfect-information extensive-form games

Definition

A (finite) perfect-information game (in extensive form) is a tuple $G=(N, A, H, Z, \chi, \rho, \sigma, u)$, where

- N is a set of n players
- $A=\left(A_{1}, \ldots, A_{n}\right)$ is a set of actions for each player
- H is a set of non-terminal choice nodes
- Z is a set of terminal nodes, disjoint from H
- $\chi: H \rightarrow 2^{A}$ is the action function
- assigns to each choice node a set of possible actions
- $\rho: H \rightarrow N$ is the player function
- assigns to each non-terminal node a player $i \in N$ who chooses an action at that node

Definition

A (finite) perfect-information game (in extensive form) is a tuple $G=(N, A, H, Z, \chi, \rho, \sigma, u)$, where

- $\chi: H \rightarrow 2^{A}$ is the action function
- assigns to each choice node a set of possible actions
- $\rho: H \rightarrow N$ is the player function
- assigns to each non-terminal node a player $i \in N$ who chooses an action at that node
- $\sigma: H \times A \rightarrow H \cup Z$ is the successor function
- maps a choice node and an action to a new choice node or terminal node such that for all $h_{1}, h_{2} \in H$ and $a_{1}, a_{2} \in A$, if $\sigma\left(h_{1}, a_{1}\right)=\sigma\left(h_{2}, a_{2}\right)$ then $h_{1}=h_{2}$ and $a_{1}=a_{2}$
- $u=\left(u_{1}, \ldots, u_{n}\right)$, where $u_{i}: Z \rightarrow \mathbb{R}$ is a utility function for player i on the terminal nodes Z
Note: the choice nodes form a tree, so we can identify a node with its history.

Example: the sharing game

Example: the sharing game

Play as a fun game, dividing 100 dollar coins. (Play each partner only once.)

Pure Strategies

- In the sharing game (splitting 2 coins) how many pure strategies does each player have?

Pure Strategies

- In the sharing game (splitting 2 coins) how many pure strategies does each player have?
- player 1: 3; player 2: 8

Pure Strategies

- In the sharing game (splitting 2 coins) how many pure strategies does each player have?
- player 1: 3; player 2: 8
- Overall, a pure strategy for a player in a perfect-information game is a complete specification of which deterministic action to take at every node belonging to that player.

Definition

Let $G=(N, A, H, Z, \chi, \rho, \sigma, u)$ be a perfect-information extensive-form game. Then the pure strategies of player i consist of the cross product

$$
\stackrel{\times}{h \in H, \rho(h)=i}{ }^{\times} \chi(h)
$$

Pure Strategies Example

What are the pure strategies for player 2?

Pure Strategies Example

What are the pure strategies for player 2?

- $S_{2}=\{(C, E) ;(C, F) ;(D, E) ;(D, F)\}$

Pure Strategies Example

What are the pure strategies for player 2?

- $S_{2}=\{(C, E) ;(C, F) ;(D, E) ;(D, F)\}$

What are the pure strategies for player 1 ?

Pure Strategies Example

What are the pure strategies for player 2?

- $S_{2}=\{(C, E) ;(C, F) ;(D, E) ;(D, F)\}$

What are the pure strategies for player 1 ?

- $S_{1}=\{(B, G) ;(B, H),(A, G),(A, H)\}$
- This is true even though, conditional on taking A, the choice between G and H will never have to be made

Nash Equilibria

Given our new definition of pure strategy, we are able to reuse our old definitions of:

- mixed strategies
- best response
- Nash equilibrium

Theorem
Every perfect information game in extensive form has a PSNE This is easy to see, since the players move sequentially.

Induced Normal Form

- In fact, the connection to the normal form is even tighter
- we can "convert" an extensive-form game into normal form

Induced Normal Form

- In fact, the connection to the normal form is even tighter
- we can "convert" an extensive-form game into normal form

		$C E$		$C F$		$D E$	$D F$
$A G$	3,8	3,8	8,3	8,3			
$A H$	3,8	3,8	8,3	8,3			
$B G$	5,5	2,10	5,5	2,10			
$B H$	5,5	1,0	5,5	1,0			

Induced Normal Form

- In fact, the connection to the normal form is even tighter
- we can "convert" an extensive-form game into normal form

	C		$C F$	
$D E$	$D F$			
$A G$	3,8	3,8	8,3	8,3
$A H$	3,8	3,8	8,3	8,3
$B G$	5,5	2,10	5,5	2,10
$B H$	5,5	1,0	5,5	1,0

- this illustrates the lack of compactness of the normal form
- games aren't always this small
- even here we write down 16 payoff pairs instead of 5

Induced Normal Form

- In fact, the connection to the normal form is even tighter
- we can "convert" an extensive-form game into normal form

- while we can write any extensive-form game as a NF, we can't do the reverse.
- e.g., matching pennies cannot be written as a perfect-information extensive form game

Induced Normal Form

- In fact, the connection to the normal form is even tighter
- we can "convert" an extensive-form game into normal form

			$C E$	
$C F$	$D E$		$D F$	
$A G$	3,8	3,8	8,3	8,3
$A H$	3,8	3,8	8,3	8,3
$B G$	5,5	2,10	5,5	2,10
$B H$	5,5	1,0	5,5	1,0

- What are the (three) pure-strategy equilibria?

Induced Normal Form

- In fact, the connection to the normal form is even tighter
- we can "convert" an extensive-form game into normal form

	$C E$		$C F$	
$D E$	$D F$			
$A G$	3,8	3,8	8,3	8,3
$A H$	3,8	3,8	8,3	8,3
$B G$	5,5	2,10	5,5	2,10
$B H$	5,5	1,0	5,5	1,0

- What are the (three) pure-strategy equilibria?
- $(A, G),(C, F)$
- $(A, H),(C, F)$
- $(B, H),(C, E)$

Induced Normal Form

- In fact, the connection to the normal form is even tighter
- we can "convert" an extensive-form game into normal form

	$C E$		$C F$	
$D E$	$D F$			
$A G$	3,8	3,8	8,3	8,3
$A H$	3,8	3,8	8,3	8,3
$B G$	5,5	2,10	5,5	2,10
$B H$	5,5	1,0	5,5	1,0

- What are the (three) pure-strategy equilibria?
- $(A, G),(C, F)$
- $(A, H),(C, F)$
- $(B, H),(C, E)$

Lecture Overview

Recap

Perfect-Information Extensive-Form Games

Subgame Perfection

Subgame Perfection

- There's something intuitively wrong with the equilibrium $(B, H),(C, E)$
- Why would player 1 ever choose to play H if he got to the second choice node?
- After all, G dominates H for him

Subgame Perfection

- There's something intuitively wrong with the equilibrium $(B, H),(C, E)$
- Why would player 1 ever choose to play H if he got to the second choice node?
- After all, G dominates H for him
- He does it to threaten player 2, to prevent him from choosing F, and so gets 5
- However, this seems like a non-credible threat
- If player 1 reached his second decision node, would he really follow through and play H ?

Formal Definition

- Define subgame of G rooted at h :
- the restriction of G to the descendents of H.
- Define set of subgames of G :
- subgames of G rooted at nodes in G
- s is a subgame perfect equilibrium of G iff for any subgame G^{\prime} of G, the restriction of s to G^{\prime} is a Nash equilibrium of G^{\prime}
- Notes:
- since G is its own subgame, every SPE is a NE.
- this definition rules out "non-credible threats"

Back to the Example

- Which equilibria from the example are subgame perfect?

Back to the Example

- Which equilibria from the example are subgame perfect?
- $(A, G),(C, F)$ is subgame perfect
- (B, H) is an non-credible threat, so $(B, H),(C, E)$ is not subgame perfect
- (A, H) is also non-credible, even though H is "off-path"

