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Iterated Removal of Dominated Strategies

I This process preserves Nash equilibria.
I strict dominance: all equilibria preserved.
I weak or very weak dominance: at least one equilibrium

preserved.

I Thus, it can be used as a preprocessing step before computing
an equilibrium

I Some games are solvable using this technique.

I What about the order of removal when there are multiple
dominated strategies?

I strict dominance: doesn’t matter.
I weak or very weak dominance: can affect which equilibria are

preserved.
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Is si strictly dominated by any pure strategy?

for all pure strategies ai ∈ Ai for player i where ai 6= si do
dom← true
for all pure strategy profiles a−i ∈ A−i for the players other than i
do

if ui(si, a−i) ≥ ui(ai, a−i) then
dom← false
break

end if
end for
if dom = true then return true

end for
return false

I What the complexity of this procedure is O(|A|).
I We don’t have to check mixed strategies of the other players

because of linearity of expectation
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LP for determining whether si is strictly dominated by any
mixed strategy

minimize
∑
j∈Ai

pj

subject to
∑
j∈Ai

pjui(aj , a−i) ≥ ui(si, a−i) ∀a−i ∈ A−i

I This is clearly an LP. Why is it a solution to our problem?
I if a solution exists with

∑
j pj < 1 then we can add 1−

∑
j pj

to some pk and we’ll have a dominating mixed strategy (since
utility was assumed to be positive everywhere)
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Iterated elimination

Finding a single game where all strategies survive elimination of
dominated strategies is polynomial-time. Other questions:

1. (Strategy Elimination) Does there exist some elimination
path under which the strategy si is eliminated?

2. (Reduction Identity) Given action subsets A′
i ⊆ Ai for each

player i, does there exist a maximally reduced game where
each player i has the actions A′

i?

3. (Uniqueness) Does every elimination path lead to the same
reduced game?

4. (Reduction Size) Given constants ki for each player i, does
there exist a maximally reduced game where each player i has
exactly ki actions?

I For iterated strict dominance these problems are all in P.
I For iterated weak or very weak dominance these problems are

all NP-complete.
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Rationalizability

I Rather than ask what is irrational, ask what is a best response
to some beliefs about the opponent

I assumes opponent is rational
I assumes opponent knows that you and the others are rational
I ...

I Will there always exist a rationalizable strategy?
I Yes, equilibrium strategies are always rationalizable.

I Furthermore, in two-player games, rationalizable ⇔ survives
iterated removal of strictly dominated strategies.
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Pithy Quote

If there is intelligent life on other planets, in a majority of
them, they would have discovered correlated equilibrium
before Nash equilibrium.

– Roger Myerson
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Examples

I Consider again Battle of the Sexes.
I Intuitively, the best outcome seems a 50-50 split between

(F, F ) and (B,B).
I But there’s no way to achieve this, so either someone loses out

(unfair) or both players often miscoordinate

I Another classic example: traffic game
go wait

go −100,−100 10, 0
B 0, 10 −10,−10
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Intuition

I What is the natural solution here?

I A traffic light: a fair randomizing device that tells one of the
agents to go and the other to wait.

I Benefits:
I the negative payoff outcomes are completely avoided
I fairness is achieved
I the sum of social welfare exceeds that of any Nash equilibrium

I We could use the same idea to achieve the fair outcome in
battle of the sexes.

I Our example presumed that everyone perfectly observes the
random event; not required.

I More generally, some random variable with a commonly
known distribution, and a private signal to each player about
the outcome.

I signal doesnt determine the outcome or others’ signals;
however, correlated
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Formal definition

I (Ω, π) is a finite probability space
I for every agent i, divide Ω into a set of partitions

Pi = {Pi,1, . . . , Pi,ki
}

I For all i,
⋃ki

j=1 Pi,j = Ω and j 6= j′ implies that
Pi,j ∩ Pi,j′ = ∅.

I We’ll use the partitions to indicate values of Ω that are
indistinguishable for i.

I (Pure) strategy: σi : Ω→ Ai
I To capture our intuition about the partitions, we need the

property that (ω, ω′ ∈ Pi) implies that σi(ω) = σi(ω′)

Definition
(Ω, π,P, σ), is a correlated equilibrium when∑

ω∈Ω

π(ω)ui (σi(ω), σ−i(ω)) ≥
∑
ω∈Ω

π(ω)ui

(
σ′

i(ω), σ−i(ω)
)
.
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Existence

Theorem
For every Nash equilibrium σ∗ of a game G = (N,A, u) there
exists a correlated equilibrium (Ω, π,P, σ) under which each agent
i ∈ N plays each action a ∈ Ai with probability σ∗

i (a).
Proof. We show how to construct the correlated equilibrium from
the given Nash equilibrium σ∗. Set Ω to be A1 × . . .×An, the
joint action space of G. Set π(a) to be

∏
i∈N σ∗(ai), the

probability that joint action a will be played under the joint mixed
strategy σ∗. Set Pi,j to be the set of joint actions in which player i
takes action j. Then the correlated equilibrium strategy is
σi(ω) = a for ω ∈ Pi,a. The fact that no agent can increase his
utility by adopting some new strategy σ′

i follows directly from the
fact that σ∗ is a Nash equilibrium.
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Other remarks

I Not every correlated equilibrium is equivalent to a Nash
equilibrium

I thus, correlated equilibrium is a weaker notion than Nash

I Any convex combination of the payoffs achievable under
correlated equilibria is itself realizable under a correlated
equilibrium

I start with the Nash equilibria (each of which is a CE)
I introduce a second randomizing device that selects which CE

the agents will play
I regardless of the probabilities, no agent has incentive to deviate
I the probabilities can be adjusted to achieve any convex

combination of the equilibrium payoffs
I the randomizing devices can be combined
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Computing CE

∑
a∈A|ai∈a

p(a)ui(a) ≥
∑

a∈A|a′
i∈a

p(a)ui(a′i, a−i) ∀i ∈ N, ∀ai, a
′
i ∈ Ai

p(a) ≥ 0 ∀a ∈ A∑
a∈A

p(a) = 1

I variables: p(a); constants: ui(a)

I we could find the social-welfare maximizing CE by adding an
objective function

maximize:
∑
a∈A

p(a)
∑
i∈N

ui(a).
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Why are CE easier to compute than NE?

∑
a∈A|ai∈a

p(a)ui(a) ≥
∑

a∈A|a′
i∈a

p(a)ui(a′i, a−i) ∀i ∈ N, ∀ai, a
′
i ∈ Ai

p(a) ≥ 0 ∀a ∈ A∑
a∈A

p(a) = 1

I intuitively, correlated equilibrium has only a single randomization
over outcomes, whereas in NE this is constructed as a product of
independent probabilities.

I To change this program so that it finds NE, the first constraint
would be∑

a∈A

ui(a)
∏
j∈N

pj(aj) ≥
∑
a∈A

ui(a′i, a−i)
∏

j∈N\{i}

pj(aj) ∀i ∈ N, ∀a′i ∈ Ai.

I This is a nonlinear constraint!
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