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Max-Min Strategies

I Player i’s maxmin strategy is a strategy that maximizes i’s
worst-case payoff, in the situation where all the other players
(whom we denote −i) happen to play the strategies which
cause the greatest harm to i.

I The maxmin value (or safety level) of the game for player i is
that minimum amount of payoff guaranteed by a maxmin
strategy.

I Why would i want to play a maxmin strategy?

I a conservative agent maximizing worst-case payoff
I a paranoid agent who believes everyone is out to get him

Definition
The maxmin strategy for player i is arg maxsi mins−i ui(s1, s2),
and the maxmin value for player i is maxsi mins−i ui(s1, s2).
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Minmax Theorem

Theorem (Minmax theorem (von Neumann, 1928))

In any finite, two-player, zero-sum game it is the case that:

1. The maxmin value for one player is equal to the minmax value
for the other player. By convention, the maxmin value for
player 1 is called the value of the game.

2. For both players, the set of maxmin strategies coincides with
the set of minmax strategies.

3. Any maxmin strategy profile (or, equivalently, minmax
strategy profile) is a Nash equilibrium. Furthermore, these are
all the Nash equilibria. Consequently, all Nash equilibria have
the same payoff vector (namely, those in which player 1 gets
the value of the game).
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Linear Programming

maximize
∑

i

wixi

subject to
∑

i

wc
i xi ≥ bc ∀c ∈ C

xi ≥ 0 ∀xi ∈ X

I These problems can be solved in polynomial time using
interior point methods.

I Interestingly, the (worst-case exponential) simplex method is
often faster in practice.

Iterated Dominance, Rationalizability, Correlated Equilibrium CPSC 532A Lecture 7, Slide 5



Recap Iterated Removal Computation Rationalizability Fun Game

Computing equilibria of zero-sum games

minimize U∗
1

subject to
∑

a2∈A2

u1(a1, a2) · sa2
2 ≤ U∗

1 ∀a1 ∈ A1∑
a2∈A2

sa2
2 = 1

sa2
2 ≥ 0 ∀a2 ∈ A2

I This program can also be used on a modified version of a
general-sum two-player game to compute maxmin and
minmax strategies.
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Domination

I Let si and s′i be two strategies for player i, and let S−i be is
the set of all possible strategy profiles for the other players

Definition
si strictly dominates s′i if ∀s−i ∈ S−i, ui(si, s−i) > ui(s′i, s−i)

Definition
si weakly dominates s′i if ∀s−i ∈ S−i, ui(si, s−i) ≥ ui(s′i, s−i) and
∃s−i ∈ S−i, ui(si, s−i) > ui(s′i, s−i)

Definition
si very weakly dominates s′i if ∀s−i ∈ S−i, ui(si, s−i) ≥ ui(s′i, s−i)
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Dominated strategies

I No equilibrium can involve a strictly dominated strategy
I Thus we can remove it, and end up with a strategically

equivalent game
I This might allow us to remove another strategy that wasn’t

dominated before
I Running this process to termination is called iterated removal

of dominated strategies.
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Iterated Removal of Dominated Strategies: Example

L C R

U 3, 1 0, 1 0, 0

M 1, 1 1, 1 5, 0

D 0, 1 4, 1 0, 0

I R is dominated by L.

Iterated Dominance, Rationalizability, Correlated Equilibrium CPSC 532A Lecture 7, Slide 10



Recap Iterated Removal Computation Rationalizability Fun Game

Iterated Removal of Dominated Strategies: Example

L C R

U 3, 1 0, 1 0, 0

M 1, 1 1, 1 5, 0

D 0, 1 4, 1 0, 0

I R is dominated by L.

Iterated Dominance, Rationalizability, Correlated Equilibrium CPSC 532A Lecture 7, Slide 10



Recap Iterated Removal Computation Rationalizability Fun Game

Iterated Removal of Dominated Strategies: Example

L C

U 3, 1 0, 1

M 1, 1 1, 1

D 0, 1 4, 1

I M is dominated by the mixed strategy that selects U and D
with equal probability.
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Iterated Removal of Dominated Strategies

I This process preserves Nash equilibria.
I strict dominance: all equilibria preserved.
I weak or very weak dominance: at least one equilibrium

preserved.

I Thus, it can be used as a preprocessing step before computing
an equilibrium

I Some games are solvable using this technique.
I Example: Traveler’s Dilemma!

I What about the order of removal when there are multiple
dominated strategies?

I strict dominance: doesn’t matter.
I weak or very weak dominance: can affect which equilibria are

preserved.
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Computational Problems in Domination

I Identifying strategies dominated by a pure strategy

I Identifying strategies dominated by a mixed strategy

I Identifying strategies that survive iterated elimination

I Asking whether a strategy survives iterated elimination under
all elimination orderings

I We’ll assume that i’s utility function is strictly positive
everywhere (why is this OK?)
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Is si strictly dominated by any pure strategy?

for all pure strategies ai ∈ Ai for player i where ai 6= si do
dom← true
for all pure strategy profiles a−i ∈ A−i for the players other than i
do

if ui(si, a−i) ≥ ui(ai, a−i) then
dom← false
break

end if
end for
if dom = true then return true

end for
return false

I What is the complexity of this procedure?

I Why don’t we have to check mixed strategies of the other
players?

I What would we have to change to test for weak or very weak
dominance?
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Constraints for determining whether si is strictly
dominated by any mixed strategy

∑
j∈Ai

pjui(aj , a−i) > ui(si, a−i) ∀a−i ∈ A−i

pj ≥ 0 ∀j ∈ Ai∑
j∈Ai

pj = 1

I What’s wrong with this program?
I strict inequality in the first constraint means we don’t have an

LP
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LP for determining whether si is strictly dominated by any
mixed strategy

minimize
∑
j∈Ai

pj

subject to
∑
j∈Ai

pjui(aj , a−i) ≥ ui(si, a−i) ∀a−i ∈ A−i

I This is clearly an LP. Why is it a solution to our problem?

I if a solution exists with
∑

j pj < 1 then we can add 1−
∑

j pj

to some pk and we’ll have a dominating mixed strategy (since
utility was assumed to be positive everywhere)

I Our original program (weak inequality) works for very weak
domination

I For weak domination we can use that program with a different
objective function trick.
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Identifying strategies that survive iterated elimination

I This can be done by repeatedly solving our LPs: solving a
polynomial number of LPs is still in P.

I Checking whether every pure strategy of every player is
dominated by any other mixed strategy requires us to solve at
worst

∑
i∈N |Ai| linear programs.

I Each step removes one pure strategy for one player, so there
can be at most

∑
i∈N (|Ai| − 1) steps.

I Thus we need to solve O((n · a∗)2) linear programs, where
a∗ = maxi |Ai|.
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Further questions about iterated elimination

1. (Strategy Elimination) Does there exist some elimination
path under which the strategy si is eliminated?

2. (Reduction Identity) Given action subsets A′
i ⊆ Ai for each

player i, does there exist a maximally reduced game where
each player i has the actions A′

i?

3. (Uniqueness) Does every elimination path lead to the same
reduced game?

4. (Reduction Size) Given constants ki for each player i, does
there exist a maximally reduced game where each player i has
exactly ki actions?

I For iterated strict dominance these problems are all in P.

I For iterated weak or very weak dominance these problems are
all NP-complete.
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Rationalizability

I Rather than ask what is irrational, ask what is a best response
to some beliefs about the opponent

I assumes opponent is rational
I assumes opponent knows that you and the others are rational
I ...

I Examples
I is heads rational in matching pennies?

I is cooperate rational in prisoner’s dilemma?

I Will there always exist a rationalizable strategy?
I Yes, equilibrium strategies are always rationalizable.

I Furthermore, in two-player games, rationalizable ⇔ survives
iterated removal of strictly dominated strategies.
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Fun game

L H S
L 90, 90 0, 0 0, 40
B 0, 0 180, 180 0, 40

I What’s the equilibrium?

I 50-50 L-H dominates S for column, so we have a standard
coordination game.

I What happens when people play?

I with 0, 40, 96% row and 84% column choose the high payoff
H, coordination occurs 80% of the time.

I with 400, 40, 64% row and 76% column chose H; coordination
on H,H 32% of the time, coordination on L,L 16% of the time,
uncoordinated over half the time
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