Minmax and Dominance

CPSC 532A Lecture 6

September 28, 2006

Lecture Overview

> Recap

> Maxmin and Minmax

> Linear Programming

Computing

Fun Game

Domination

What are solution concepts?

- Solution concept: a subset of the outcomes in the game that are somehow interesting.
- There is an implicit computational problem of finding these outcomes given a particular game.
- Depending on the concept, existence can be an issue.

Solution concepts we've seen so far:

What are solution concepts?

- Solution concept: a subset of the outcomes in the game that are somehow interesting.
- There is an implicit computational problem of finding these outcomes given a particular game.
- Depending on the concept, existence can be an issue.

Solution concepts we've seen so far:

- Pareto-optimal outcome
- Pure-strategy Nash equilibrium
- Mixed-strategy Nash equilibrium
- Other Nash variants:
- weak Nash equilibrium
- strict Nash equilibrium

Mixed Strategies

- It would be a pretty bad idea to play any deterministic strategy in matching pennies
- Idea: confuse the opponent by playing randomly
- Define a strategy s_{i} for agent i as any probability distribution over the actions A_{i}.
- pure strategy: only one action is played with positive probability
- mixed strategy: more than one action is played with positive probability
- these actions are called the support of the mixed strategy
- Let the set of all strategies for i be S_{i}
- Let the set of all strategy profiles be $S=S_{1} \times \ldots \times S_{n}$.

Best Response and Nash Equilibrium

Our definitions of best response and Nash equilibrium generalize from actions to strategies.

- Best response:
- $s_{i}^{*} \in B R\left(s_{-i}\right)$ iff $\forall s_{i} \in S_{i}, u_{i}\left(s_{i}^{*}, s_{-i}\right) \geq u_{i}\left(s_{i}, s_{-i}\right)$
- Nash equilibrium:
- $s=\left\langle s_{1}, \ldots, s_{n}\right\rangle$ is a Nash equilibrium iff $\forall i, s_{i} \in B R\left(s_{-i}\right)$
- Every finite game has a Nash equilibrium! [Nash, 1950]
- e.g., matching pennies: both players play heads/tails $50 \% / 50 \%$

Lecture Overview

Recap
 Maxmin and Minmax
 Linear Programming

Computing

Fun Game

Domination

Max-Min Strategies

- Player i 's maxmin strategy is a strategy that maximizes i 's worst-case payoff, in the situation where all the other players (whom we denote $-i$) happen to play the strategies which cause the greatest harm to i.
- The maxmin value (or safety level) of the game for player i is that minimum amount of payoff guaranteed by a maxmin strategy.
- Why would i want to play a maxmin strategy?

Max-Min Strategies

- Player i 's maxmin strategy is a strategy that maximizes i 's worst-case payoff, in the situation where all the other players (whom we denote $-i$) happen to play the strategies which cause the greatest harm to i.
- The maxmin value (or safety level) of the game for player i is that minimum amount of payoff guaranteed by a maxmin strategy.
- Why would i want to play a maxmin strategy?
- a conservative agent maximizing worst-case payoff
- a paranoid agent who believes everyone is out to get him

Definition

The maxmin strategy for player i is $\arg \max _{s_{i}} \min _{s_{-i}} u_{i}\left(s_{1}, s_{2}\right)$, and the maxmin value for player i is $\max _{s_{i}} \min _{s_{-i}} u_{i}\left(s_{1}, s_{2}\right)$.

Min-Max Strategies

- Player i 's minmax strategy in a 2-player game is a strategy that minimizes the other player - i 's best-case payoff.
- The minmax value of the 2-player game for player i is that maximum amount of payoff that $-i$ could achieve under i 's minmax strategy.
- Why would i want to play a minmax strategy?

Min-Max Strategies

- Player i 's minmax strategy in a 2-player game is a strategy that minimizes the other player - i 's best-case payoff.
- The minmax value of the 2-player game for player i is that maximum amount of payoff that $-i$ could achieve under i 's minmax strategy.
- Why would i want to play a minmax strategy?
- to punish the other agent as much as possible

Definition

The maxmin strategy for player i is $\arg \max _{s_{i}} \min _{s_{-i}} u_{i}\left(s_{1}, s_{2}\right)$, and the maxmin value for player i is $\max _{s_{i}} \min _{s_{-i}} u_{i}\left(s_{1}, s_{2}\right)$.

Definition

In a two-player game, the minmax strategy for player i is $\arg \min _{s_{i}}$ $\max _{s_{-i}} u_{-i}\left(s_{1}, s_{2}\right)$, and the minmax value for player i is $\min _{s_{i}}$ $\max _{s_{-i}} u_{-i}\left(s_{1}, s_{2}\right)$.

Minmax Theorem

Theorem (Minmax theorem (von Neumann, 1928))

In any finite, two-player, zero-sum game it is the case that:

1. The maxmin value for one player is equal to the minmax value for the other player. By convention, the maxmin value for player 1 is called the value of the game.
2. For both players, the set of maxmin strategies coincides with the set of minmax strategies.
3. Any maxmin strategy profile (or, equivalently, minmax strategy profile) is a Nash equilibrium. Furthermore, these are all the Nash equilibria. Consequently, all Nash equilibria have the same payoff vector (namely, those in which player 1 gets the value of the game).

Lecture Overview

> Recap

> Maxmin and Minmax

> Linear Programming

Computing

Fun Game

Domination

Linear Programming

A linear program is defined by:

- a set of real-valued variables
- a linear objective function
- a weighted sum of the variables
- a set of linear constraints
- the requirement that a weighted sum of the variables must be greater than or equal to some constant

Linear Programming

$$
\begin{array}{llr}
\text { maximize } & \sum_{i} w_{i} x_{i} & \\
\text { subject to } & \sum_{i} w_{i}^{c} x_{i} \geq b^{c} & \forall c \in C \\
& x_{i} \geq 0 & \forall x_{i} \in X
\end{array}
$$

- These problems can be solved in polynomial time using interior point methods.
- Interestingly, the (worst-case exponential) simplex method is often faster in practice.

Lecture Overview

Recap

Maxmin and Minmax

Linear Programming

Computing

Fun Game Domination

Computing equilibria of zero-sum games

$$
\begin{aligned}
\operatorname{minimize} & U_{1}^{*} \\
\text { subject to } & \sum_{a_{2} \in A_{2}} u_{1}\left(a_{1}, a_{2}\right) \cdot s_{2}^{a_{2}} \leq U_{1}^{*}
\end{aligned} \quad \forall a_{1} \in A_{1}
$$

- variables:
- U_{1}^{*} is the expected utility for player 1
- $s_{2}^{a_{2}}$ is player 2 's probability of playing action a_{2} under his mixed strategy
- each $u_{1}\left(a_{1}, a_{2}\right)$ is a constant.

Computing equilibria of zero-sum games

$$
\begin{array}{rll}
\operatorname{minimize} & U_{1}^{*} & \\
\text { subject to } & \sum_{a_{2} \in A_{2}} u_{1}\left(a_{1}, a_{2}\right) \cdot s_{2}^{a_{2}} \leq U_{1}^{*} & \forall a_{1} \in A_{1} \\
& \sum_{a_{2} \in A_{2}} s_{2}^{a_{2}}=1 & \\
& s_{2}^{a_{2}} \geq 0 & \forall a_{2} \in A_{2}
\end{array}
$$

- s_{2} is a valid probability distribution.

Computing equilibria of zero-sum games

$$
\begin{aligned}
\operatorname{minimize} & U_{1}^{*} \\
\text { subject to } & \sum_{a_{2} \in A_{2}} u_{1}\left(a_{1}, a_{2}\right) \cdot s_{2}^{a_{2}} \leq U_{1}^{*}
\end{aligned} \quad \forall a_{1} \in A_{1}
$$

- U_{1}^{*} is as small as possible.

Computing equilibria of zero-sum games

$$
\begin{aligned}
\operatorname{minimize} & U_{1}^{*} \\
\text { subject to } & \sum_{a_{2} \in A_{2}} u_{1}\left(a_{1}, a_{2}\right) \cdot s_{2}^{a_{2}} \leq U_{1}^{*}
\end{aligned} \quad \forall a_{1} \in A_{1}
$$

- Player 1's expected utility for playing each of his actions under player 2's mixed strategy is no more than U_{1}^{*}.
- Because U_{1}^{*} is minimized, this constraint will be tight for some actions: the support of player 1's mixed strategy.

Computing equilibria of zero-sum games

$$
\begin{aligned}
\operatorname{minimize} & U_{1}^{*} \\
\text { subject to } & \sum_{a_{2} \in A_{2}} u_{1}\left(a_{1}, a_{2}\right) \cdot s_{2}^{a_{2}} \leq U_{1}^{*} \\
& \sum_{a_{2} \in A_{2}} s_{2}^{a_{2}}=1
\end{aligned} \quad \forall a_{1} \in A_{1}
$$

- This formulation gives us the minmax strategy for player 2.
- To get the minmax strategy for player 1 , we need to solve a second (analogous) LP.

Computing Maxmin Strategies in General-Sum Games

Let's say we want to compute a maxmin strategy for player 1 in an arbitrary 2-player game G.

Computing Maxmin Strategies in General-Sum Games

Let's say we want to compute a maxmin strategy for player 1 in an arbitrary 2-player game G.

- Create a new game G^{\prime} where player 2's payoffs are just the negatives of player 1's payoffs.
- The maxmin strategy for player 1 in G does not depend on player 2's payoffs
- Thus, the maxmin strategy for player 1 in G is the same as the maxmin strategy for player 1 in G^{\prime}
- By the minmax theorem, equilibrium strategies for player 1 in G^{\prime} are equivalent to a maxmin strategies
- Thus, to find a maxmin strategy for G, find an equilibrium strategy for G^{\prime}.

Lecture Overview

> Recap

> Maxmin and Minmax

> Linear Programming

Computing

Fun Game

Domination

Traveler's Dilemma

Two travelers purchase identical African masks while on a tropical vacation. Their luggage is lost on the return trip, and the airline asks them to make independent claims for compensation. In anticipation of excessive claims, the airline representative announces: "We know that the bags have identical contents, and we will entertain any claim between $\$ 180$ and $\$ 300$, but you will each be reimbursed at an amount that equals the minimum of the two claims submitted. If the two claims differ, we will also pay a reward R to the person making the smaller claim and we will deduct a penalty R from the reimbursement to the person making the larger claim."

Traveler's Dilemma

- Action: choose an integer between 180 and 300
- If both players pick the same number, they both get that amount as payoff
- If players pick a different number:
- the low player gets his number (L) plus some constant R
- the high player gets $L-R$.
- Play this game once with a partner; play with as many different partners as you like.
- $R=5$.

Traveler's Dilemma

- Action: choose an integer between 180 and 300
- If both players pick the same number, they both get that amount as payoff
- If players pick a different number:
- the low player gets his number (L) plus some constant R
- the high player gets $L-R$.
- Play this game once with a partner; play with as many different partners as you like.
- $R=5$.
- $R=180$.

Traveler's Dilemma

- What is the equilibrium?

Traveler's Dilemma

- What is the equilibrium?
- $(180,180)$ is the only equilibrium, for all $R \geq 2$.

Traveler's Dilemma

- What is the equilibrium?
- $(180,180)$ is the only equilibrium, for all $R \geq 2$.
- What happens?

Traveler's Dilemma

- What is the equilibrium?
- $(180,180)$ is the only equilibrium, for all $R \geq 2$.
- What happens?
- with $R=5$ most people choose 295-300
- with $R=180$ most people choose 180

Lecture Overview

Maxmin and Minmax

Linear Programming

Computing

Fun Game

Domination

Domination

- Let s_{i} and s_{i}^{\prime} be two strategies for player i, and let S_{-i} be is the set of all possible strategy profiles for the other players

Definition

s_{i} strictly dominates s_{i}^{\prime} if $\forall s_{-i} \in S_{-i}, u_{i}\left(s_{i}, s_{-i}\right)>u_{i}\left(s_{i}^{\prime}, s_{-i}\right)$
Definition
s_{i} weakly dominates s_{i}^{\prime} if $\forall s_{-i} \in S_{-i}, u_{i}\left(s_{i}, s_{-i}\right) \geq u_{i}\left(s_{i}^{\prime}, s_{-i}\right)$ and $\exists s_{-i} \in S_{-i}, u_{i}\left(s_{i}, s_{-i}\right)>u_{i}\left(s_{i}^{\prime}, s_{-i}\right)$

Definition
s_{i} very weakly dominates s_{i}^{\prime} if $\forall s_{-i} \in S_{-i}, u_{i}\left(s_{i}, s_{-i}\right) \geq u_{i}\left(s_{i}^{\prime}, s_{-i}\right)$

Equilibria and dominance

- If one strategy dominates all others, we say it is dominant.
- A strategy profile consisting of dominant strategies for every player must be a Nash equilibrium.
- An equilibrium in strictly dominant strategies must be unique.

Equilibria and dominance

- If one strategy dominates all others, we say it is dominant.
- A strategy profile consisting of dominant strategies for every player must be a Nash equilibrium.
- An equilibrium in strictly dominant strategies must be unique.
- Consider Prisoner's Dilemma again
- not only is the only equilibrium the only non-Pareto-optimal outcome, but it's also an equilibrium in strictly dominant strategies!

Dominated strategies

- No equilibrium can involve a strictly dominated strategy (why?)

Dominated strategies

- No equilibrium can involve a strictly dominated strategy (why?)
- Thus we can remove it, and end up with a strategically equivalent game
- This might allow us to remove another strategy that wasn't dominated before
- Running this process to termination is called iterated removal of dominated strategies.

