## Game Theory intro

### CPSC 532A Lecture 3

September 19, 2006

Game Theory intro

CPSC 532A Lecture 3, Slide 1

æ

イロト イヨト イヨト イヨト

## Lecture Overview

Recap: Utility Theory

Game Theory

**Example Matrix Games** 

CPSC 532A Lecture 3, Slide 2

æ

- - 4 回 ト - 4 回 ト

Game Theory intro

# Self-interested agents

▶ What does it mean to say that an agent is self-interested?

- not that they want to harm other agents
- not that they only care about things that benefit them
- that the agent has its own description of states of the world that it likes, and that its actions are motivated by this description
- Utility theory:
  - quantifies degree of preference across alternatives
  - understand the impact of uncertainty on these preferences
  - utility function: a mapping from states of the world to real numbers, indicating the agent's level of happiness with that state of the world
  - Decision-theoretic rationality: take actions to maximize expected utility.

▲□ → ▲ □ → ▲ □ → …

### Preferences Over Outcomes

#### If $o_1$ and $o_2$ are outcomes

- $o_1 \succeq o_2$  means  $o_1$  is at least as desirable as  $o_2$ .
  - read this as "the agent weakly prefers o<sub>1</sub> to o<sub>2</sub>"
- $o_1 \sim o_2$  means  $o_1 \succeq o_2$  and  $o_2 \succeq o_1$ .
  - read this as "the agent is indifferent between  $o_1$  and  $o_2$ ."
- $o_1 \succ o_2$  means  $o_1 \succeq o_2$  and  $o_2 \not\succeq o_1$ 
  - read this as "the agent strictly prefers o<sub>1</sub> to o<sub>2</sub>"

伺 ト イヨト イヨト

### Lotteries

- An agent may not know the outcomes of his actions, but may instead only have a probability distribution over the outcomes.
- A lottery is a probability distribution over outcomes. It is written

$$[p_1:o_1, p_2:o_2, \dots, p_k:o_k]$$

where the  $o_i$  are outcomes and  $p_i > 0$  such that

$$\sum_{i} p_i = 1$$

- The lottery specifies that outcome o<sub>i</sub> occurs with probability p<sub>i</sub>.
- We will consider lotteries to be outcomes.

伺 ト イヨト イヨト

## Preference Axioms: Completeness

Completeness: A preference relationship must be defined between every pair of outcomes:

$$\forall o_1 \forall o_2 \ o_1 \succeq o_2 \text{ or } o_2 \succeq o_1$$

・日・ ・ヨ・ ・ヨ・

### Preference Axioms: Transitivity

Transitivity: Preferences must be transitive:

if 
$$o_1 \succeq o_2$$
 and  $o_2 \succeq o_3$  then  $o_1 \succeq o_3$ 

- ▶ This makes good sense: otherwise  $o_1 \succeq o_2$  and  $o_2 \succeq o_3$  and  $o_3 \succ o_1$ .
- An agent should be prepared to pay some amount to swap between an outcome they prefer less and an outcome they prefer more
- Intransitive preferences mean we can construct a "money pump"!

4 E K 4 E K

Monotonicity: An agent prefers a larger chance of getting a better outcome to a smaller chance:

▶ If 
$$o_1 \succ o_2$$
 and  $p > q$  then

$$[p:o_1, 1-p:o_2] \succ [q:o_1, 1-q:o_2]$$

イロト イヨト イヨト イヨト

Let  $P_{\ell}(o_i)$  denote the probability that outcome  $o_i$  is selected by lottery  $\ell$ . For example, if  $\ell = [0.3 : o_1; 0.7 : [0.8 : o_2; 0.2 : o_1]]$  then  $P_{\ell}(o_1) = 0.44$  and  $P_{\ell}(o_3) = 0$ .

Decomposability: ("no fun in gambling"). If  $\forall o_i \in O$ ,  $P_{\ell_1}(o_i) = P_{\ell_2}(o_i)$  then  $\ell_1 \sim \ell_2$ .

3

・日本 ・日本 ・日本

Substitutability: If o₁ ~ o₂ then for all sequences of one or more outcomes o₃,..., ok and sets of probabilities p, p₃,..., pk for which p + ∑<sup>k</sup><sub>i=3</sub> p<sub>i</sub> = 1, [p: o₁, p₃: o₃,..., pk: ok] ~ [p: o₂, p₃: o₃,..., pk: ok].

• E • • E • · ·

Continuity: Suppose  $o_1 \succ o_2$  and  $o_2 \succ o_3$ , then there exists a  $p \in [0, 1]$  such that  $o_2 \sim [p : o_1, 1 - p : o_3]$ 

★ E ► ★ E ►

< □ > < 🗗 >

# Preferences and utility functions

### Theorem (von Neumann and Morgenstern, 1944)

If an agent's preference relation satisfies the axioms Completeness, Transitivity, Decomposability, Substitutability, Monotonicity and Continuity then there exists a function  $u: O \rightarrow [0,1]$  with the properties that:

- 1.  $u(o_1) \ge u(o_2)$  iff the agent prefers  $o_1$  to  $o_2$ ; and
- 2. when faced about uncertainty about which outcomes he will receive, the agent prefers outcomes that maximize the expected value of *u*.

Proof idea for part 2:

- $\blacktriangleright$  define the utility of the best outcome  $u(\overline{o})=1$  and of the worst  $u(\underline{o})=0$
- ▶ now define the utility of each other outcome o as the p for which  $o \sim [p:\overline{o}; (1-p):\underline{o}]$ .

## Lecture Overview

Recap: Utility Theory

#### Game Theory

**Example Matrix Games** 

CPSC 532A Lecture 3, Slide 13

æ

- 4 回 2 - 4 回 2 - 4 回 2 - 4

Game Theory intro

What is it?



æ

(신문) (신문)

What is it?

 mathematical study of interaction between rational, self-interested agents

- 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □

What is it?

mathematical study of interaction between rational, self-interested agents

Why is it called non-cooperative?

< ≣ >

#### What is it?

 mathematical study of interaction between rational, self-interested agents

- Why is it called non-cooperative?
  - while it's most interested in situations where agents' interests conflict, it's not restricted to these settings
  - the key is that the individual is the basic modeling unit, and that individuals pursue their own interests
    - cooperative/coalitional game theory has teams as the central unit, rather than agents

・回 ・ ・ ヨ ・ ・ ヨ ・ ・

## TCP Backoff Game



Game Theory intro

CPSC 532A Lecture 3, Slide 15

◆ロ > ◆母 > ◆臣 > ◆臣 > ○臣 - のへで

# TCP Backoff Game



Should you send your packets using correctly-implemented TCP (which has a "backoff" mechanism) or using a defective implementation (which doesn't)?

- Consider this situation as a two-player game:
  - **both use a correct implementation**: both get 1 ms delay
  - one correct, one defective: 4 ms delay for correct, 0 ms for defective
  - both defective: both get a 3 ms delay.

A (10) A (10)

# TCP Backoff Game

- Consider this situation as a two-player game:
  - **both use a correct implementation**: both get 1 ms delay
  - one correct, one defective: 4 ms delay for correct, 0 ms for defective
  - both defective: both get a 3 ms delay.
- Questions:
  - What action should a player of the game take?
  - Would all users behave the same in this scenario?
  - What global patterns of behaviour should the system designer expect?
  - Under what changes to the delay numbers would behavior be the same?
  - What effect would communication have?
  - Repetitions? (finite? infinite?)
  - Does it matter if I believe that my opponent is rational?

イロト イヨト イヨト イヨト

# **Defining Games**

Finite, *n*-person game:  $\langle N, A, u \rangle$ :

- N is a finite set of n players, indexed by i
- $A = A_1, \ldots, A_n$  is a set of actions for each player i
  - $a \in A$  is an action profile
- ▶  $u = \{u_1, \ldots, u_n\}$ , a utility function for each player, where  $u_i : A \mapsto \mathbb{R}$
- Writing a 2-player game as a matrix:
  - row player is player 1, column player is player 2
  - rows are actions  $a \in A_1$ , columns are  $a' \in A_2$
  - cells are outcomes, written as a tuple of utility values for each player

(本部)) (本語)) (本語)) (語)

## Lecture Overview

Recap: Utility Theory

Game Theory

Example Matrix Games

CPSC 532A Lecture 3, Slide 17

- 4 回 2 - 4 回 2 - 4 回 2 - 4

Game Theory intro

## Games in Matrix Form

Here's the TCP Backoff Game written as a matrix ("normal form").

$$C$$
  $D$ 

$$\begin{array}{c|ccc} C & -1, -1 & -4, 0 \\ \hline D & 0, -4 & -3, -3 \end{array}$$

・ロン ・団 と ・ 国 と ・ 国 と

CPSC 532A Lecture 3. Slide 18

## Games in Matrix Form

Here's the TCP Backoff Game written as a matrix ("normal form").

 $\sim$ 

$$C \qquad D$$

$$C \qquad -1, -1 \qquad -4, 0$$

$$D \quad 0, -4 \quad -3, -3$$

Play this game with someone near you, repeating five times.

・ 回 と ・ ヨ と ・ ヨ と …

### More General Form

#### Prisoner's dilemma is any game

 $\begin{array}{c|c} C & D \\ \\ C & a, a & b, c \\ \\ D & c, b & d, d \end{array}$ 

with c > a > d > b.

CPSC 532A Lecture 3, Slide 19

< 注→ < 注→

< 🗗 ►

## Games of Pure Competition

Players have exactly opposed interests

- There must be precisely two players (otherwise they can't have exactly opposed interests)
- ▶ For all action profiles  $a \in A$ ,  $u_1(a) + u_2(a) = c$  for some constant c
  - Special case: zero sum
- ▶ Thus, we only need to store a utility function for one player
  - in a sense, it's a one-player game

# Matching Pennies

One player wants to match; the other wants to mismatch.

Heads 1 -1 Tails -1 1

Heads

Tails

Game Theory intro

CPSC 532A Lecture 3, Slide 21

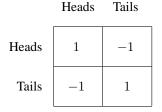
æ

< 注→ < 注→

< 🗇 🕨

# Matching Pennies

One player wants to match; the other wants to mismatch.



Play this game with someone near you, repeating five times.

→ 문 → < 문 →</p>

## **Rock-Paper-Scissors**

Generalized matching pennies.

|          | Rock | Paper | Scissors |
|----------|------|-------|----------|
| Rock     | 0    | -1    | 1        |
| Paper    | 1    | 0     | -1       |
| Scissors | -1   | 1     | 0        |

...Believe it or not, there's an annual international competition for this game!

▲圖▶ ▲屋▶ ▲屋▶

# Games of Cooperation

Players have exactly the same interests.

no conflict: all players want the same things

$$\blacktriangleright \forall a \in A, \forall i, j, u_i(a) = u_j(a)$$

- we often write such games with a single payoff per cell
- why are such games "noncooperative"?

## Coordination Game

#### Which side of the road should you drive on?

Left Right

| Left  | 1 | 0 |
|-------|---|---|
| Right | 0 | 1 |

Game Theory intro

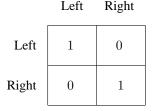
CPSC 532A Lecture 3, Slide 24

★ 문 ► ★ 문 ►

< □ > < 🗗 >

## Coordination Game

#### Which side of the road should you drive on?



Play this game with someone near you, repeating five times.