Recap	Beyond IPV	Multiunit auctions	Combinatorial Auctions	Bidding Languages

Multi-Good Auctions

CPSC 532A Lecture 23

November 30, 2006

3

< (T) >

< 3 > <

 Recap
 Beyond IPV
 Multiunit auctions
 Combinatorial Auctions
 Bidding Languages

 Revenue
 Equivalence
 Final Auctions
 Equivalence
 Final Auctions
 Equivalence

• Which auction should an auctioneer choose? To some extent, it doesn't matter...

Theorem (Revenue Equivalence Theorem)

Assume that each of n risk-neutral agents has an independent private valuation for a single good at auction, drawn from a common cumulative distribution F(v) that is strictly increasing and atomless on $[\underline{v}, \overline{v}]$. Then any auction mechanism in which

• the good will be allocated to the agent with the highest valuation; and

• any agent with valuation \underline{v} has an expected utility of zero; yields the same expected revenue, and hence results in any bidder with valuation v making the same expected payment.

ヘロン 人間と 人間と 人間と

Designing optimal auctions

Definition

Bidder *i*'s virtual valuation is

$$\psi_i(v_i) = v_i - \frac{1 - F_i(v_i)}{f_i(v_i)}.$$

Definition

Bidder i 's bidder-specific reserve price r_i^* is the value for which $\psi_i(r_i^*)=0.$

Theorem

The optimal (single-good) auction is a sealed-bid auction in which every agent is asked to declare his valuation. The good is sold to the agent $i = \arg \max_i \psi_i(\hat{v}_i)$, as long as $v_i > r_i^*$. If the good is sold, the winning agent i is charged $\max(r_i^*, \max_{j \neq i} \psi_j(v_j))$.

- common value model
 - motivation: oil well
 - winner's curse
 - things can be improved by revealing more information
- general model
 - IPV + common value
 - example motivation: private value plus resale

★ E ► < E ►</p>

3

< 3 > <

< 67 ▶

Recap	Beyond IPV	Multiunit auctions	Combinatorial Auctions	Bidding Languages
A (('1')				
Attiliate	<u>a values</u>			

- Definition: a high value of one bidder's signal makes high values of other bidders' signals more likely
 - common value model is a special case
- generally, ascending auctions lead to higher expected prices than 2nd-price, which in turn leads to higher expected prices than 1st price
 - intuition: winner's gain depends on the privacy of his information.
 - The more the price paid depends on others' information (rather than expectations of others' information), the more closely this price is related to the winner's information, since valuations are affiliated
 - thus the winner loses the privacy of his information, and can extract a smaller "information rent"

伺 ト イヨト イヨト

Recap	Beyond IPV	Multiunit auctions	Combinatorial Auctions	Bidding Languages
٨				
ATFILIATE	a valles			

- Definition: a high value of one bidder's signal makes high values of other bidders' signals more likely
 - common value model is a special case
- generally, ascending auctions lead to higher expected prices than 2nd-price, which in turn leads to higher expected prices than 1st price
 - intuition: winner's gain depends on the privacy of his information.
 - The more the price paid depends on others' information (rather than expectations of others' information), the more closely this price is related to the winner's information, since valuations are affiliated
 - thus the winner loses the privacy of his information, and can extract a smaller "information rent"
- Linkage principle: if the seller has access to any private source of information which will be affiliated with the bidders' valuations, she should precommit to reveal it honestly.

Recap	Beyond IPV	Multiunit auctions	Combinatorial Auctions	Bidding Languages
Risk A	ttitudes			

- Buyer:
 - no change under various risk attitudes for second price
 - in first-price, increasing bid amount increases probability of winning, decreases profit. This is good for risk-averse bidder, bad for risk-seeking bidder.
 - Risk averse, IPV: [First Price] \succ [Japanese = English = Second]
 - Risk seeking, IPV: Second \succ First
- Auctioneer:
 - revenue is fixed in first price auction (the expected amount of the 2nd-highest bid)
 - revenue varies in second price auction, with the same expected value
 - thus, a risk-averse seller prefers first-price to second-price.

向下 イヨト イヨト

3 Multiunit auctions

4 Combinatorial Auctions

æ

< 注→ < 注→

< 67 ▶

• consider three second-price auctions for the same good; you only want one. Are the auctions still truthful?

프 🖌 🛪 프 🕨

- consider three second-price auctions for the same good; you only want one. Are the auctions still truthful?
 - everyone should bid honestly in the final auction
 - bidder has an expected utility (conditioned on type) in that auction
 - in the second-last auction, bid the difference between valuation and the expected utility for losing (i.e., the expected utility for playing the second auction)
 - combining these last two auctions together, there's some expected utility to playing both of them
 - now this is the "expected utility of losing"
 - apply backward induction

- now let's consider a setting in which there are k identical goods for sale in a single auction
- easiest setting: every bidder only wants one unit
- what is VCG in this setting?

《문》 《문》

- now let's consider a setting in which there are k identical goods for sale in a single auction
- easiest setting: every bidder only wants one unit
- what is VCG in this setting?
 - $\bullet\,$ every unit is sold for the amount of the $k+1{\rm st}$ highest bid

• E • • E •

- now let's consider a setting in which there are k identical goods for sale in a single auction
- easiest setting: every bidder only wants one unit
- what is VCG in this setting?
 - every unit is sold for the amount of the k + 1st highest bid
- how else can we sell the goods?

• E • • E • •

Recap	Beyond IPV	Multiunit auctions	Combinatorial Auctions	Bidding Languages
Multiun	it Auctio	ns		

- now let's consider a setting in which there are k identical goods for sale in a single auction
- easiest setting: every bidder only wants one unit
- what is VCG in this setting?
 - $\bullet\,$ every unit is sold for the amount of the $k+1{\rm st}$ highest bid
- how else can we sell the goods?
 - pay-your-bid: "discriminatory" pricing, because bidders will pay different amounts for the same thing
 - lowest winning bid: very similar to VCG, but ensures that bidders don't pay zero if there are fewer bids than units for sale
- in fact, the revenue equivalence theorem holds in this setting, so all these schemes must lead to the same expected payment.

(< E) < E) = E</p>

How can bidders express their valuations in a multiunit auction?

- $\bullet \ m$ homogeneous goods, let S denote some set
- general: let p_1, \ldots, p_m be arbitrary, non-negative real numbers. Then $v(S) = \sum_{j=1}^{|S|} p_j$.
- downward sloping: general, but $p_1 \ge p_2 \ge \ldots \ge p_m$
- additive: v(S) = c|S|
- single-item: v(S) = c if $s \neq \emptyset$; 0 otherwise
- fixed-budget: $v(S) = \min(c|S|, b)$
- majority: v(S) = c if $|S| \ge m/2$, 0 otherwise

1 Recap

- 2 Beyond IPV
- 3 Multiunit auctions
- 4 Combinatorial Auctions

6 Bidding Languages

3

< 注→ < 注→

- now consider a case where multiple, heterogeneous goods are being sold.
- consider the sorts of valuations that agents could have in this case:
 - complementarity: for sets S and T, $v(S \cup T) > v(S) + v(T)$
 - e.g., a left shoe and a right shoe
 - substitutability: $v(S \cup T) < v(S) + v(T)$
 - e.g., two tickets to different movies playing at the same time
- substitutability is relatively easy to deal with
 - e.g., just sell the goods sequentially, or allow bid withdrawal
- complementarity is trickier...

(< E) < E) = E</p>

Recap	Beyond IPV	Multiunit auctions	Combinatorial Auctions	Bidding Languages
Fun Ga	me			

1	2	3
4	5	6
7	8	9

- 9 plots of land for sale, geographically related as shown
- IPV, normally distributed with mean 50, stdev 5
- payoff:
 - if you get one good other than $\#5: v_i$
 - any two goods: $3v_i$
 - any three (or more) goods: $5v_i$
- Rules:
 - auctioneer moves from one good to the next sequentially, holding an English auction for each good.
 - bidding stops on a good: move on to the next good
 - no bids for any of the 9 goods: end the auction

Combinatorial auctions

- running a simultaneous ascending auction is inefficient
 - exposure problem
 - inefficiency due to fear of exposure
- if we want an efficient outcome, why not just run VCG?
 - unfortunately, it requires solving an NP-hard problem
 - let there be n goods, m bids, sets C_j of XOR bids
 - weighted set packing problem:

$$\begin{aligned} \max \sum_{i=1}^m x_i p_i \\ \text{subject to} \sum_{i \mid g \in S_i} x_i &\leq 1 & \forall g \\ x_i \in \{0, 1\} & \forall i \\ \sum_{k \in C_j} x_k &\leq 1 & \forall j \end{aligned}$$

• E • • E •

Recap Beyond IPV Multiunit auctions Combinatorial Auctions Bidding Languages

Combinatorial auctions

$$\begin{split} \max \sum_{i=1}^m x_i p_i \\ \text{subject to} \sum_{i \mid g \in S_i} x_i &\leq 1 & \forall g \\ x_i \in \{0, 1\} & \forall i \\ \sum_{k \in C_j} x_k &\leq 1 & \forall j \end{split}$$

- we don't need the XOR constraints
 - instead, we can introduce "dummy goods" that don't correspond to goods in the auction, but that enforce XOR constraints.
 - amounts to exactly the same thing: the first constraint has the same form as the third

Lecture Overview

3 ×

 Recap
 Beyond IPV
 Multiunit auctions
 Combinatorial Auctions
 Bidding Languages

 Expressing a bid in combinatorial auctions:
 OR bidding

• Atomic bid: (S, p) means v(S) = p

- $\bullet\,$ implicitly, an "AND" of the singletons in S
- OR bid: combine atomic bids
- let v_1, v_2 be arbitrary valuations

$$(v_1 \lor v_2)(S) = \max_{\substack{R, T \subseteq S \\ R \cup T = \emptyset}} [v_1(R) + v_2(S)]$$

Theorem

OR bids can express all valuations that do not have any substitutability, and only these valuations.

Recap	Beyond IPV	Multiunit auctions	Combinatorial Auctions	Bidding Languages
XOR B	ids			

XOR bidding: allow substitutabilities
 (v₁XORv₂)(S) = max(v₁(S), v₂(S))

Theorem

XOR bids can represent any valuation

- this isn't really surprising, since we can enumerate valuations
- however, this implies that they don't represent everything efficiently

Theorem

Additive valuations require linear space with OR, exponential space with XOR

• likewise with many other valuations: any in which the price is different for every bundle

 Recap
 Beyond IPV
 Multiunit auctions
 Combinatorial Auctions
 Bidding Languages

 Composite Bidding Languages
 Find the second sec

• OR-of-XOR

 sets of XOR bids, where the bidder is willing to get either one or zero from each set

• $(\dots XOR \dots XOR \dots)OR(\dots)OR(\dots)$

Theorem

Any downward sloping valuation can be represented using the OR-of-XOR language using at most m^2 atomic bids.

• XOR-of-OR

- a set of OR atomic bids, where the bidder is willing to select from only one of these sets
- generalized OR/XOR
 - arbitrary nesting of OR and XOR

・ 同 ト ・ ヨ ト ・ ヨ ト

OR*

• OR, but uses dummy goods to simulate XOR constraints

Theorem

OR-of-XOR size $k \Rightarrow OR^*$ *size* $k, \leq k$ *dummy goods*

Theorem

Generalized OR/XOR size $k \Rightarrow$ OR* size k, $\leq k^2$ dummy goods

Corollary

XOR-of-OR size $k \Rightarrow OR^*$ size $k, \leq k^2$ dummy goods

・日・ ・ ヨ・ ・ ヨ・