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Intuitive comparison of 5 auctions

Intuitive Comparison of 5 auctions

• How should agents bid in these auctions?

 English Dutch Japanese 1st-Price 2nd-Price 

Duration #bidders, 
increment 

starting 
price, clock 

speed 

#bidders, 
increment 

fixed fixed 

Info 
Revealed 

2nd-highest 
val; bounds 
on others 

winner’s 
bid 

all val’s but 
winner’s 

none none 

Jump bids yes n/a no n/a n/a 

Price 
Discovery 

yes no yes no no 

Regret no yes no yes no 

 

Fill in “regret” after 
the fun game
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Second-Price

Theorem

Truth-telling is a dominant strategy in a second-price auction.

Theorem

Under the independent private values model (IPV), it is a
dominant strategy for bidders to bid up to (and not beyond) their
valuations in both Japanese and English auctions.
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First-Price and Dutch

Theorem

First-Price and Dutch auctions are strategically equivalent.

Theorem

In a first-price sealed bid auction with n risk-neutral agents whose
valuations are independently drawn from a uniform distribution on
the same bounded interval of the real numbers, the unique
symmetric equilibrium is given by the strategy profile
(n−1

n v1, . . . ,
n−1

n vn).
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Revenue Equivalence

Which auction should an auctioneer choose? To some extent,
it doesn’t matter...

Theorem (Revenue Equivalence Theorem)

Assume that each of n risk-neutral agents has an independent
private valuation for a single good at auction, drawn from a
common cumulative distribution F (v) that is strictly increasing
and atomless on [v, v̄]. Then any auction mechanism in which

the good will be allocated to the agent with the highest
valuation; and

any agent with valuation v has an expected utility of zero;

yields the same expected revenue, and hence results in any bidder
with valuation v making the same expected payment.
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Revenue Equivalence Proof

Proof.
Consider any mechanism (direct or indirect) for allocating the good. Let ui(v̂)
be i’s expected utility and let pi(v̂) be i’s probability of being awarded the
good, in equilibrium of the mechanism if he follows the equilibrium strategy for
an agent with type v̂ and this were in fact his type.

ui(vi) = vipi(vi)− E[payment by type vi of player i] (1)

From the definition of equilibrium,

ui(vi) ≥ ui(v̂) + (vi − v̂)pi(v̂) (2)

By behaving according to the equilibrium strategy for a player of type v̂, i
makes all the same payments and wins the good with the same probability as
an agent of type v̂. Because an agent of type vi values the good (vi − v̂) more
than an agent of type v̂ does, we must add this term. The inequality holds
because this deviation must be unprofitable. Consider v̂ = vi + dvi, by
substituting this expression into Equation (2):

ui(vi) ≥ ui(vi + dvi) + dvipi(vi + dvi) (3)
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Revenue Equivalence Proof

Proof.
Likewise, considering the possibility that i’s true type could be vi + dvi,

ui(vi + dvi) ≥ ui(vi) + dvipi(vi) (4)

Combining Equations (3) and (4), we have

pi(vi + dvi) ≥
ui(vi + dvi)− ui(vi)

dvi
≥ pi(vi) (5)

Taking the limit as dvi → 0 gives

dui

dvi
= pi(vi) (6)

Integrating up,

ui(vi) = ui(v) +

Z vi

x=v

pi(x)dx (7)
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Revenue Equivalence Proof

Proof.
Now consider any two mechanisms which satisfy the conditions given in the
statement of the theorem. A bidder with valuation v will never win (since the
distribution is atomless), so his expected utility ui(v) = 0. Every agent i has
the same pi(vi) (his probability of winning given his type vi) under the two
mechanisms, regardless of his type. These mechanisms must then also have the
same ui functions, by Equation (7). From Equation (1), this means that a
player of any given type vi must make the same expected payment in both
mechanisms. Thus, i’s ex-ante expected payment is also the same in both
mechanisms. Since this is true for all i, the auctioneer’s expected revenue is
also the same in both mechanisms.
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First and Second Price Auctions

The kth order statistic of a distribution: the expected value of
the kth-largest of n draws.

For n IID draws from [0, vmax], the kth order statistic is

n+ 1− k
n+ 1

vmax.

Thus in a second-price auction, the seller’s expected revenue is

n− 1
n+ 1

vmax.

First and second-price auctions satisfy the requirements of the
revenue equivalence theorem

every symmetric game has a symmetric equilibrium
in a symmetric equilibrium of this auction game, higher bid ⇔
higher valuation
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Applying Revenue Equivalence

Thus, a bidder in a FPA must bid his expected payment
conditional on being the winner of a second-price auction

if he’s not the high bidder, he gets no utility anyway, so his
strategy should be based on the assumption that he is the high
bidder
if vi is the high value, there are then n− 1 other values drawn
from the uniform distribution on [0, vi]
thus, the expected value of the second-highest bid is the
first-order statistic of n− 1 draws from [0, vi]:

n+ 1− k
n+ 1

vmax =
(n− 1) + 1− (1)

(n− 1) + 1
(vi) =

n− 1
n

vi

This provides a basis for our earlier claim about n-bidder
first-price auctions.

However, we’d still have to check that this is an equilibrium
The revenue equivalence theorem doesn’t say that every
revenue-equivalent strategy profile is an equilibrium!
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Fun game

Pass around the jar of coins and try to determine how much
money is inside.

Once everyone has seen it, we’ll play a game...
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Optimal Auctions

So far we have only considered efficient auctions.

What about maximizing the seller’s revenue?

she may be willing to risk failing to sell the good even when
there is an interested buyer
she may be willing sometimes to sell to a buyer who didn’t
make the highest bid

Mechanisms which are designed to maximize the seller’s
expected revenue are known as optimal auctions.
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Optimal auctions setting

independent private valuations

risk-neutral bidders

each bidder i’s valuation drawn from some strictly increasing
cumulative density function Fi(v) (PDF fi(v))

we allow Fi 6= Fj : asymmetric auctions

the seller knows each Fi
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Designing optimal auctions

Definition

Bidder i’s virtual valuation is

ψi(vi) = vi −
1− Fi(vi)
fi(vi)

.

Definition

Bidder i’s bidder-specific reserve price r∗i is the value for which
ψi(r∗i ) = 0.

Theorem

The optimal (single-good) auction is a sealed-bid auction in which
every agent is asked to declare his valuation. The good is sold to
the agent i = arg maxi ψi(v̂i), as long as vi > r∗i . If the good is
sold, the winning agent i is charged max(r∗i ,maxj 6=iψj(vj)).
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Analyzing optimal auctions

Theorem

The optimal (single-good) auction is a sealed-bid auction in which
every agent is asked to declare his valuation. The good is sold to
the agent i = arg maxi ψi(v̂i), as long as vi > r∗i . If the good is
sold, the winning agent i is charged max(r∗i ,maxj 6=iψj(vj)).

Is this VCG?

No, it’s not efficient.

How should bidders bid?

it’s a second-price auction with a reserve price, held in virtual
valuation space.
neither the reserve prices nor the virtual valuation
transformation depends on the agent’s declaration
thus the proof that a second-price auction is dominant-strategy
truthful applies here as well
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Analyzing optimal auctions

Theorem

The optimal (single-good) auction is a sealed-bid auction in which
every agent is asked to declare his valuation. The good is sold to
the agent i = arg maxi ψi(v̂i), as long as vi > r∗i . If the good is
sold, the winning agent i is charged max(r∗i ,maxj 6=iψj(vj)).

What happens in the special case where all agents’ valuations
are drawn from the same distribution?

a second-price auction with reserve price r∗ satisfying

r∗ − 1−Fi(r
∗)

fi(r∗)
= 0.

What happens in the general case?
the virtual valuations also increase weak bidders’ bids, making
them more competitive.
low bidders can win, paying less
however, bidders with higher expected valuations must bid
more aggressively
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Fun game

Look at the jar of coins

Bid for it using real money in a sealed-bid second-price
auction.
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Going beyond IPV

common value model

motivation: oil well
winner’s curse
things can be improved by revealing more information

general model

IPV + common value
example motivation: private value plus resale
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