Risk Attitudes; Groves Mechanism

CPSC 532A Lecture 18

November 14, 2006
Lecture Overview

1. Recap
2. Risk Attitudes
3. Quasilinear Mechanisms
4. Properties
5. The Groves Mechanism
Revelation Principle

- It turns out that truthfulness can always be achieved!
- Consider an arbitrary, non-truthful mechanism (e.g., may be indirect)
- Recall that a mechanism defines a game, and consider an equilibrium \(s = (s_1, \ldots, s_n) \)
We can construct a new direct mechanism, as shown above.

This mechanism is truthful by exactly the same argument that \(s \) was an equilibrium in the original mechanism.

“The agents don’t have to lie, because the mechanism already lies for them.”
Impossibility Result

Theorem (Gibbard-Satterthwaite)

Consider any social choice function C of N and O. If:

1. $|O| \geq 3$ (there are at least three outcomes);
2. C is onto; that is, for every $o \in O$ there is a preference vector \succ such that $C(\succ) = o$ (this property is sometimes also called citizen sovereignty); and
3. C is dominant-strategy truthful,

then C is dictatorial.
Quasilinear Utility

Definition (Quasilinear preferences)

Agents have quasilinear preferences in an n-player Bayesian game when the set of outcomes is $O = X \times \mathbb{R}^n$ for a finite set X, and the utility of an agent i with type θ_i is given by

$$u_i(o, \theta_i) = u_i(x, \theta_i) - f_i(p_i),$$

where $o = (x, p_i)$ is an element of O, $u_i(x, \theta_i)$ is an arbitrary function and $f_i : \mathbb{R} \rightarrow \mathbb{R}$ is a strictly monotonically increasing function.
Lecture Overview

1 Recap

2 Risk Attitudes

3 Quasilinear Mechanisms

4 Properties

5 The Groves Mechanism
Fun game

- Look at your piece of paper: it contains an integer x.
- Go around the room offering everyone the following gamble:
 - they pay you x
 - you flip a coin:
 - heads: they win and get paid $2x$
 - tails: they lose and get nothing.
- Players can accept the gamble or decline.
 - Answer honestly (imagining the amounts of money are real)
 - play the gamble to see what would have happened.
- Keep track of:
 - Your own “bank balance” from others’ gambles you accepted.
 - The number of people who accepted your offer.
Risk Attitudes

- How much is $1 worth?
- What are the units in which this question should be answered?
Risk Attitudes

- How much is $1 worth?
 - What are the units in which this question should be answered?
 Utils (units of utility)
Risk Attitudes

- How much is $1 worth?
 - What are the units in which this question should be answered?
 - Utils (units of utility)
 - Different amounts depending on the amount of money you already have
Risk Attitudes

- How much is $1 worth?
 - What are the units in which this question should be answered? Utils (units of utility)
 - Different amounts depending on the amount of money you already have
- How much is a gamble with an expected value of $1 worth?
How much is $1 worth?
- What are the units in which this question should be answered? Utils (units of utility)
- Different amounts depending on the amount of money you already have

How much is a gamble with an expected value of $1 worth?
- Possibly different amounts, depending on how risky it is
Risk Neutrality

(a) Risk neutrality

(b) Risk neutrality: fair lottery
Risk Aversion

(c) Risk aversion

(d) Risk aversion: fair lottery
Risk Seeking

(e) Risk seeking

(f) Risk seeking: fair lottery
Lecture Overview

1. Recap
2. Risk Attitudes
3. Quasilinear Mechanisms
4. Properties
5. The Groves Mechanism
Quasilinear Mechanisms

Definition (Quasilinear mechanism)

A mechanism in the quasilinear setting (over a set of agents \(N \) and a set of outcomes \(O = X \times \mathbb{R}^n \)) is a triple \((A, \chi, p)\), where

- \(A = A_1 \times \cdots \times A_n \), where \(A_i \) is the set of actions available to agent \(i \in N \),
- \(\chi : A \rightarrow \Pi(X) \) maps each action profile to a distribution over choices, and
- \(p : A \rightarrow \mathbb{R}^n \) maps each action profile to a payment for each agent.
Quasilinear Mechanisms

Definition (Direct quasilinear mechanism)

A direct quasilinear mechanism (over a set of agents N and a set of outcomes $O = X \times \mathbb{R}^n$) is a pair (χ, p). It defines a standard mechanism in the quasilinear setting, where for each i, $A_i = \Theta_i$.

- An agent's valuation for choice $x \in X$: $v_i(x) = u_i(x, \theta)$
 - the maximum amount i would be willing to pay to get x
 - in fact, i would be indifferent between keeping the money and getting x
- Equivalent definition: mechanisms that ask agents i to declare $v_i(x)$ for each $x \in X$
- Define \hat{v}_i as the valuation that agent i declares to such a direct mechanism
 - may be different from his true valuation v_i
- Also define the tuples \hat{v}, \hat{v}_{-i}
Lecture Overview

1. Recap
2. Risk Attitudes
3. Quasilinear Mechanisms
4. Properties
5. The Groves Mechanism
Truthfulness

Definition (Truthfulness)

A mechanism is *truthful* if $\forall i \forall v_i$, agent i’s equilibrium strategy is to adopt the strategy $\hat{v}_i = v_i$.

- Our definition before, adapted for the quasilinear setting
Efficiency

Definition (Efficiency)

A mechanism is efficient if it selects a choice \(x \) such that
\[
\forall i \forall v_i \forall x', \sum_i v_i(x) \geq \sum_i v_i(x').
\]

- An efficient mechanism selects the choice that maximizes the sum of agents’ utilities, disregarding monetary payments.
- Called economic efficiency to distinguish from other (e.g., computational) notions
- Also called social-welfare maximization
- Note: defined in terms of true (not declared) valuations, not declared valuations.
Budget Balance

Definition (Budget balance)

A mechanism is **budget balanced** when \(\forall \hat{v}, \sum_i p_i(\hat{v}) = 0 \).

- regardless of the agents’ types, the mechanism collects and disburses the same amount of money from and to the agents
- relaxed version: **weak budget balance**: \(\forall \hat{v} \sum_i p_i(\hat{v}) \geq 0 \)
 - the mechanism never takes a loss, but it may make a profit
- Budget balance can be required to hold *ex ante*: \(\mathbb{E}_v \sum_i p_i(v) = 0 \)
 - the mechanism must break even or make a profit only on expectation
Individual-Rationality

Definition (*Ex-interim* individual rationality)

A mechanism is *ex-interim individual rational* when

\[\forall i \forall v, \mathbb{E}_{v_i \mid v_i} v_i(\chi(s_i(v_i), s_{-i}(v_{-i}))) - p_i(s_i(v_i), s_{-i}(v_{-i})) \geq 0, \]

where \(s \) is the equilibrium strategy profile.

- no agent loses by participating in the mechanism.
- *ex-interim* because it holds for every possible valuation for agent \(i \), but averages over the possible valuations of the other agents.

Definition (*Ex-post* individual rationality)

A mechanism is *ex-post individual rational* when

\[\forall i \forall v, v_i(\chi(s(v))) - p_i(s(v)) \geq 0, \]

where \(s \) is the equilibrium strategy profile.
Tractability

Definition (Tractability)

A mechanism is **tractable** when $\forall \hat{v}, \chi(\hat{v})$ and $p(\hat{v})$ can be computed in polynomial time.

- The mechanism is computationally feasible.
Revenue Maximization

Definition (Revenue maximization)

A mechanism is *revenue maximizing* when, among the set of functions χ and p which satisfy the other constraints, the mechanism selects the χ and p which maximize $\mathbb{E}_\theta \sum_i p_i(s(\theta))$, where $s(\theta)$ denotes the agents’ equilibrium strategy.

- The mechanism designer can choose among mechanisms that satisfy the desired constraints by adding an objective function such as revenue maximization.
Lecture Overview

1. Recap
2. Risk Attitudes
3. Quasilinear Mechanisms
4. Properties
5. The Groves Mechanism
A positive result

- Recall that in the quasilinear utility setting, a mechanism can be defined as a **choice rule** and a **payment rule**.
- The **Groves mechanism** is a mechanism that satisfies:
 - dominant strategy (truthfulness)
 - efficiency
- In general it’s not:
 - budget balanced
 - individual-rational

...though we’ll see later that there’s some hope for recovering these properties.
The Groves mechanism is a direct quasilinear mechanism $(\mathbb{R}^{|X|n}, \chi, p)$, where

\[\chi(\hat{v}) = \arg \max_x \sum_i \hat{v}_i(x) \]

\[p_i(\hat{v}) = h_i(\hat{v}_{-i}) - \sum_{j \neq i} \hat{v}_j(\chi(\hat{v})) \]
The choice rule should not come as a surprise (why not?)
The choice rule should not come as a surprise (why not?) because the mechanism is both truthful and efficient: these properties entail the given choice rule.

\[
\chi(\hat{v}) = \arg \max_x \sum_i \hat{v}_i(x)
\]

\[
p_i(\hat{v}) = h_i(\hat{v}_{-i}) - \sum_{j \neq i} \hat{v}_j(\chi(\hat{v}))
\]
The choice rule should not come as a surprise (why not?) because the mechanism is both truthful and efficient: these properties entail the given choice rule.

So what’s going on with the payment rule?

- the agent i must pay some amount $h_i(\hat{v}_-i)$ that doesn't depend on his own declared valuation
- the agent i is paid $\sum_{j \neq i} \hat{v}_j(\chi(\hat{v}))$, the sum of the others’ valuations for the chosen outcome
Groves Truthfulness

Theorem

Truth telling is a dominant strategy under the Groves mechanism.

Consider a situation where every agent j other than i follows some arbitrary strategy \hat{v}_j. Consider agent i’s problem of choosing the best strategy \hat{v}_i. As a shorthand, we will write $\hat{v} = (\hat{v}_{-i}, \hat{v}_i)$. The best strategy for i is one that solves

$$\max_{\hat{v}_i} \left(v_i(\chi(\hat{v})) - p(\hat{v}) \right)$$

Substituting in the payment function from the Groves mechanism, we have

$$\max_{\hat{v}_i} \left(v_i(\chi(\hat{v})) - h_i(\hat{v}_{-i}) + \sum_{j \neq i} \hat{v}_j(\chi(\hat{v})) \right)$$

Since $h_i(\hat{v}_{-i})$ does not depend on \hat{v}_i, it is sufficient to solve

$$\max_{\hat{v}_i} \left(v_i(\chi(\hat{v})) + \sum_{j \neq i} \hat{v}_j(\chi(\hat{v})) \right).$$
Groves Truthfulness

\[
\max_{\hat{v}_i} \left(v_i(\chi(\hat{v})) + \sum_{j \neq i} \hat{v}_j(\chi(\hat{v})) \right).
\]

The only way the declaration \(\hat{v}_i \) influences this maximization is through the choice of \(x \). If possible, \(i \) would like to pick a declaration \(\hat{v}_i \) that will lead the mechanism to pick an \(x \in X \) which solves

\[
\max_x \left(v_i(x) + \sum_{j \neq i} \hat{v}_j(x) \right).
\]

Under the Groves mechanism,

\[
\chi(\hat{v}) = \arg \max_x \left(\sum_i \hat{v}_i(x) \right) = \arg \max_x \left(\hat{v}_i(x) + \sum_{j \neq i} \hat{v}_j(x) \right).
\]

The Groves mechanism will choose \(x \) in a way that solves the maximization problem in Equation (1) when \(i \) declares \(\hat{v}_i = v_i \). Because this argument does not depend in any way on the declarations of the other agents, truth-telling is a dominant strategy for agent \(i \).
Proof intuition

- externalities are internalized
 - agents may be able to change the outcome to another one that they prefer, by changing their declaration
 - however, their utility doesn’t just depend on the outcome; it also depends on their payment
 - since they get paid the (reported) utility of all the other agents under the chosen allocation, they now have an interest in maximizing everyone’s utility rather than just their own

- in general, DS truthful mechanisms have the property that an agent’s payment doesn’t depend on the amount of his declaration, but only on the other agents’ declarations
 - the agent’s declaration is used only to choose the outcome, and to set other agents’ payments

- we’ll see later that Groves is the only truthful DS mechanism that is efficient