Recap	Risk Attitudes	Quasilinear Mechanisms	Properties	The Groves Mechanism

Risk Attitudes; Groves Mechanism

CPSC 532A Lecture 18

November 14, 2006

Risk Attitudes; Groves Mechanism

 →
 ≥
 →
 ≥
 →
 Q

 CPSC 532A Lecture 18, Slide 1

- 2 Risk Attitudes
- 3 Quasilinear Mechanisms
- 4 Properties
- 5 The Groves Mechanism

3

< 注→ < 注→

< 67 ▶

- It turns out that truthfulness can always be achieved!
- Consider an arbitrary, non-truthful mechanism (e.g., may be indirect)
- Recall that a mechanism defines a game, and consider an equilibrium $s=(s_1,\ldots,s_n)$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Recap **Risk Attitudes** Quasilinear Mechanisms Properties The Groves Mechanism **Revelation Principle**

- We can construct a new direct mechanism, as shown above
- This mechanism is truthful by exactly the same argument that s was an equilibrium in the original mechanism
- "The agents don't have to lie, because the mechanism already lies for them."

< ≣ >

Impossibility Result

Theorem (Gibbard-Satterthwaite)

Consider any social choice function C of N and O. If:

- 0 |O| > 3 (there are at least three outcomes);
- 2 C is onto; that is, for every $o \in O$ there is a preference vector \succ such that $C(\succ) = o$ (this property is sometimes also called citizen sovereignty); and
- O is dominant-strategy truthful,

then C is dictatorial.

< ∃ >

Quasilinear Utility

Definition (Quasilinear preferences)

Agents have quasilinear preferences in an *n*-player Bayesian game when the set of outcomes is $O = X \times \mathbb{R}^n$ for a finite set X, and the utility of an agent i with type θ_i is given by $u_i(o, \theta_i) = u_i(x, \theta_i) - f_i(p_i)$, where $o = (x, p_i)$ is an element of O, $u_i(x, \theta_i)$ is an arbitrary function and $f_i : \mathbb{R} \to \mathbb{R}$ is a strictly monotonically increasing function.

2 Risk Attitudes

3

< 注→ < 注→

< 67 ▶

- Look at your piece of paper: it contains an integer \boldsymbol{x}
- Go around the room offering everyone the following gamble:
 - ${\ensuremath{\,\circ\,}}$ they pay you x
 - you flip a coin:
 - $\bullet\,$ heads: they win and get paid 2x
 - tails: they lose and get nothing.
 - Players can accept the gamble or decline.
 - Answer honestly (imagining the amounts of money are real)
 - play the gamble to see what would have happened.
 - Keep track of:
 - Your own "bank balance" from others' gambles you accepted.
 - The number of people who accepted your offer.

・ 同 ト ・ ヨ ト ・ ヨ ト

- How much is \$1 worth?
 - What are the units in which this question should be answered?

3

< 注→ < 注→

< 🗗 >

- How much is \$1 worth?
 - What are the units in which this question should be answered? Utils (units of utility)

æ

< 注→ < 注→

< 67 ▶

- How much is \$1 worth?
 - What are the units in which this question should be answered? Utils (units of utility)
 - Different amounts depending on the amount of money you already have

▲ 문 ▶ | ▲ 문 ▶

- How much is \$1 worth?
 - What are the units in which this question should be answered? Utils (units of utility)
 - Different amounts depending on the amount of money you already have
- How much is a gamble with an expected value of \$1 worth?

(3)

- How much is \$1 worth?
 - What are the units in which this question should be answered? Utils (units of utility)
 - Different amounts depending on the amount of money you already have
- How much is a gamble with an expected value of \$1 worth?
 - Possibly different amounts, depending on how risky it is

< ∃ >

Recap	Risk Attitudes	Quasilinear Mechanisms	Properties	The Groves Mechanism
Risk Ne	eutrality			

Risk Attitudes; Groves Mechanism

CPSC 532A Lecture 18, Slide 10

Recap	Risk Attitudes	Quasilinear Mechanisms	Properties	The Groves Mechanism
Risk Av	version			

Risk Attitudes; Groves Mechanism

CPSC 532A Lecture 18, Slide 11

Recap	Risk Attitudes	Quasilinear Mechanisms	Properties	The Groves Mechanism
Risk Se	eking			

< 注 → < 注 →

CPSC 532A Lecture 18. Slide 13

4 Properties

Risk Attitudes; Groves Mechanism

Quasilinear Mechanisms

Definition (Quasilinear mechanism)

A mechanism in the quasilinear setting (over a set of agents N and a set of outcomes $O = X \times \mathbb{R}^n$) is a triple (A, χ, p) , where

- $A = A_1 \times \cdots \times A_n$, where A_i is the set of actions available to agent $i \in N$,
- $\chi: A \to \Pi(X)$ maps each action profile to a distribution over choices, and
- $p: A \to \mathbb{R}^n$ maps each action profile to a payment for each agent.

・ 「「・ ・ 」 ・ ・ 」 正

Quasilinear Mechanisms

Definition (Direct quasilinear mechanism)

A direct quasilinear mechanism (over a set of agents N and a set of outcomes $O = X \times \mathbb{R}^n$) is a pair (χ, p) . It defines a standard mechanism in the quasilinear setting, where for each i, $A_i = \Theta_i$.

- An agent's valuation for choice $x \in X$: $v_i(x) = u_i(x, \theta)$
 - $\bullet\,$ the maximum amount i would be willing to pay to get x
 - in fact, i would be indifferent between keeping the money and getting \boldsymbol{x}
- Equivalent definition: mechanisms that ask agents i to declare $v_i(x)$ for each $x \in X$
- Define \hat{v}_i as the valuation that agent i declares to such a direct mechanism
 - may be different from his true valuation v_i
- Also define the tuples \hat{v} , \hat{v}_{-i}

Recap	Risk Attitudes	Quasilinear Mechanisms	Properties	The Groves Mechanism
Lecture	Overview			

- 2 Risk Attitudes
- Quasilinear Mechanisms

Properties

Risk Attitudes; Groves Mechanism

< ≣ > CPSC 532A Lecture 18. Slide 16

A ■ -

Definition (Truthfulness)

A mechanism is *truthful* if $\forall i \forall v_i$, agent *i*'s equilibrium strategy is to adopt the strategy $\hat{v}_i = v_i$.

Our definition before, adapted for the quasilinear setting

< ≣ >

Recap	Risk Attitudes	Quasilinear Mechanisms	Properties	The Groves Mechanism
Efficienc	cy			

Definition (Efficiency)

A mechanism is efficient if it selects a choice x such that $\forall i \forall v_i \forall x', \sum_i v_i(x) \ge \sum_i v_i(x').$

- An efficient mechanism selects the choice that maximizes the sum of agents' utilities, disregarding monetary payments.
- Called economic efficiency to distinguish from other (e.g., computational) notions
- Also called social-welfare maximization
- Note: defined in terms of true (not declared) valuations, not declared valuations.

医下颌 医下颌

Definition (Budget balance)

A mechanism is budget balanced when $\forall \hat{v}, \sum_{i} p_{i}(\hat{v}) = 0.$

- regardless of the agents' types, the mechanism collects and disburses the same amount of money from and to the agents
- relaxed version: weak budget balance: $\forall \hat{v} \sum_{i} p_{i}(\hat{v}) \geq 0$
 - the mechanism never takes a loss, but it may make a profit
- Budget balance can be required to hold *ex ante*: $\mathbb{E}_v \sum_i p_i(v) = 0$
 - the mechanism must break even or make a profit only on expectation

Individual-Rationality

Definition (*Ex-interim* individual rationality)

A mechanism is ex-interim individual rational when $\forall i \forall v_i, \mathbb{E}_{v_{-i}|v_i} v_i(\chi(s_i(v_i), s_{-i}(v_{-i}))) - p_i(s_i(v_i), s_{-i}(v_{-i})) \ge 0,$ where s is the equilibrium strategy profile.

- no agent loses by participating in the mechanism.
- *ex-interim* because it holds for *every* possible valuation for agent *i*, but averages over the possible valuations of the other agents.

Definition (*Ex-post* individual rationality)

A mechanism is ex-post individual rational when $\forall i \forall v, v_i(\chi(s(v))) - p_i(s(v)) \ge 0$, where s is the equilibrium strategy profile.

Definition (Tractability)

A mechanism is tractable when $\forall \hat{v}, \chi(\hat{v})$ and $p(\hat{v})$ can be computed in polynomial time.

• The mechanism is computationally feasible.

(신문) (신문)

Revenue Maximization

Definition (Revenue maximization)

A mechanism is *revenue maximizing* when, among the set of functions χ and p which satisfy the other constraints, the mechanism selects the χ and p which maximize $\mathbb{E}_{\theta} \sum_{i} p_{i}(s(\theta))$, where $s(\theta)$ denotes the agents' equilibrium strategy.

• The mechanism designer can choose among mechanisms that satisfy the desired constraints by adding an objective function such as revenue maximization.

- A E M A E M -

1 Recap

- 2 Risk Attitudes
- 3 Quasilinear Mechanisms

4 Properties

< 注 → < 注 →

- Recall that in the quasilinear utility setting, a mechanism can be defined as a choice rule and a payment rule.
- The Groves mechanism is a mechanism that satisfies:
 - dominant strategy (truthfulness)
 - efficiency
- In general it's not:
 - budget balanced
 - individual-rational

...though we'll see later that there's some hope for recovering these properties.

The Groves Mechanism

Definition (Groves mechanism)

The Groves mechanism is a direct quasilinear mechanism $(\mathbb{R}^{|X|n}, \chi, p)$, where

$$\begin{aligned} \boldsymbol{\chi}(\hat{v}) &= \arg \max_{x} \sum_{i} \hat{v}_{i}(x) \\ \boldsymbol{p}_{i}(\hat{v}) &= h_{i}(\hat{v}_{-i}) - \sum_{j \neq i} \hat{v}_{j}(\boldsymbol{\chi}(\hat{v})) \end{aligned}$$

2

<= ≝ ▶ < ≝ ▶

A ₽

 Recap
 Risk Attitudes
 Quasilinear Mechanisms
 Properties
 The Groves Mechanism

 The Groves
 Mechanism
 Properties
 The Groves Mechanism
 Properties
 The Groves Mechanism

$$\begin{split} \boldsymbol{\chi}(\hat{v}) &= \arg \max_{x} \sum_{i} \hat{v}_{i}(x) \\ p_{i}(\hat{v}) &= h_{i}(\hat{v}_{-i}) - \sum_{j \neq i} \hat{v}_{j}(\boldsymbol{\chi}(\hat{v})) \end{split}$$

• The choice rule should not come as a surprise (why not?)

CPSC 532A Lecture 18, Slide 26

< 注 → < 注 →

 Recap
 Risk Attitudes
 Quasilinear Mechanisms
 Properties
 The Groves Mechanism

 The Groves Mechanism

$$\begin{split} \boldsymbol{\chi}(\hat{v}) &= \arg \max_{x} \sum_{i} \hat{v}_{i}(x) \\ p_{i}(\hat{v}) &= h_{i}(\hat{v}_{-i}) - \sum_{j \neq i} \hat{v}_{j}(\boldsymbol{\chi}(\hat{v})) \end{split}$$

• The choice rule should not come as a surprise (why not?) because the mechanism is both truthful and efficient: these properties entail the given choice rule.

Risk Attitudes; Groves Mechanism

CPSC 532A Lecture 18, Slide 26

(3)

 Recap
 Risk Attitudes
 Quasilinear Mechanisms
 Properties
 The Groves Mechanism

 The Groves Mechanism

$$\chi(\hat{v}) = \arg \max_{x} \sum_{i} \hat{v}_{i}(x)$$
$$p_{i}(\hat{v}) = h_{i}(\hat{v}_{-i}) - \sum_{j \neq i} \hat{v}_{j}(\chi(\hat{v}))$$

- The choice rule should not come as a surprise (why not?) because the mechanism is both truthful and efficient: these properties entail the given choice rule.
- So what's going on with the payment rule?
 - the agent i must pay some amount $h_i(\hat{v}_{-i})$ that doesn't depend on his own declared valuation
 - the agent i is paid $\sum_{j\neq i} \hat{v}_j(\chi(\hat{v}))$, the sum of the others' valuations for the chosen outcome

白 ト イヨト イヨト

Groves Truthfulness

Theorem

Truth telling is a dominant strategy under the Groves mechanism.

Consider a situation where every agent j other than i follows some arbitrary strategy \hat{v}_j . Consider agent i's problem of choosing the best strategy \hat{v}_i . As a shorthand, we will write $\hat{v} = (\hat{v}_{-i}, \hat{v}_i)$. The best strategy for i is one that solves

 $\max_{\hat{v}_i} \left(v_i(\boldsymbol{\chi}(\hat{v})) - \boldsymbol{p}(\hat{v}) \right)$

Substituting in the payment function from the Groves mechanism, we have

$$\max_{\hat{v}_i} \left(v_i(\boldsymbol{\chi}(\hat{v})) - h_i(\hat{v}_{-i}) + \sum_{j \neq i} \hat{v}_j(\boldsymbol{\chi}(\hat{v})) \right)$$

Since $h_i(\hat{v}_{-i})$ does not depend on \hat{v}_i , it is sufficient to solve

$$\max_{\hat{v}_i} \left(v_i(\boldsymbol{\chi}(\hat{v})) + \sum_{j \neq i} \hat{v}_j(\boldsymbol{\chi}(\hat{v})) \right).$$

Risk Attitudes; Groves Mechanism

CPSC 532A Lecture 18, Slide 27

★御▶ ★理▶ ★理▶ 二臣

Recap Risk Attitudes Quasilinear Mechanisms Properties The Groves Mechanism

Groves Truthfulness

$$\max_{\hat{v}_i} \left(v_i(\boldsymbol{\chi}(\hat{v})) + \sum_{j \neq i} \hat{v}_j(\boldsymbol{\chi}(\hat{v})) \right).$$

The only way the declaration \hat{v}_i influences this maximization is through the choice of x. If possible, i would like to pick a declaration \hat{v}_i that will lead the mechanism to pick an $x \in X$ which solves

$$\max_{x} \left(v_i(x) + \sum_{j \neq i} \hat{v}_j(x) \right).$$
(1)

Under the Groves mechanism,

$$\chi(\hat{v}) = \arg \max_{x} \left(\sum_{i} \hat{v}_{i}(x) \right) = \arg \max_{x} \left(\hat{v}_{i}(x) + \sum_{j \neq i} \hat{v}_{j}(x) \right).$$

The Groves mechanism will choose x in a way that solves the maximization problem in Equation (??) when i declares $\hat{v}_i = v_i$. Because this argument does not depend in any way on the declarations of the other agents, truth-telling is a dominant strategy for agent i.

Risk Attitudes; Groves Mechanism

Recap	Risk Attitudes	Quasilinear Mechanisms	Properties	The Groves Mechanism
Proof i	ntuition			

- externalities are internalized
 - agents may be able to change the outcome to another one that they prefer, by changing their declaration
 - however, their utility doesn't just depend on the outcomeit also depends on their payment
 - since they get paid the (reported) utility of all the other agents under the chosen allocation, they now have an interest in maximizing everyone's utility rather than just their own
- in general, DS truthful mechanisms have the property that an agent's payment doesn't depend on the amount of his declaration, but only on the other agents' declarations
 - the agent's declaration is used only to choose the outcome, and to set other agents' payments
- we'll see later that Groves is the only truthful DS mechanism that is efficient

医下 不至下。