Mechanism Design; Quasilinear Utility

CPSC 532A Lecture 17

November 9, 2006
Lecture Overview

Recap

Revelation Principle

Impossibility

Quasilinear Utility
Mechanism Design

- Extend the social choice setting to a new setting where agents can’t be relied upon to disclose their preferences honestly.

Definition (Mechanism)

A mechanism (over a set of agents N and a set of outcomes O) is a pair (A, M), where

- $A = A_1 \times \cdots \times A_n$, where A_i is the set of actions available to agent $i \in N$, and
- $M : A \rightarrow \Pi(O)$ maps each action profile to a distribution over outcomes.

Thus, the designer gets to specify

- the action sets for the agents (though they may be constrained by the environment)
- the mapping to outcomes, over which agents have utility
- can’t change agents’ preferences for outcomes or type spaces
Definition (Implementation in dominant strategies)

A mechanism \((A, M)\) (over \(N\) and \(O\)) is an implementation in dominant strategies of a social choice function \(C\) over \((N and O)\) if for any vector of utility functions \(u\), the game \((N, A, O, M, u)\) has an equilibrium in dominant strategies, and in any such equilibrium \(a^*\) we have \(M(a^*) = C(u)\).
Definition (Bayes-Nash implementation)

We begin with a mechanism \((A, M)\) over \(N\) and \(O\). Let \(\Theta = \Theta_1 \times \cdots \times \Theta_n\) denote the set of all possible type vectors \(\theta = (\theta_1, \ldots, \theta_n)\), and denote agent \(i\)’s utility as \(u_i : O \times \Theta \rightarrow \mathbb{R}\). Let \(p\) be a (common prior) probability distribution on \(\Theta\) (and hence on \(u\)). Then \((A, M)\) is a **Bayes-Nash implementation** of a social choice function \(C\), with respect to \(\Theta\) and \(p\), if there exists a Bayes-Nash equilibrium of the game of incomplete information \((N, A, \Theta, p, u)\) such that for every \(\theta \in \Theta\) and every action profile \(a \in A\) that can arise given type profile \(\theta\) in this equilibrium, we have that \(M(a) = C(u(\cdot, \theta))\).
Properties

Forms of implementation

▶ Direct Implementation: agents each simultaneously send a single message to the center

▶ Indirect Implementation: agents may send a sequence of messages; in between, information may be (partially) revealed about the messages that were sent previously like extensive form

We can also insist that our mechanism satisfy properties like the following:

▶ **individual rationality**: agents are better off playing than not playing

▶ **budget balance**: the mechanism gives away and collects the same amounts of money

▶ **truthfulness**: agents honestly report their types
Lecture Overview

Recap

Revelation Principle

Impossibility

Quasilinear Utility
Recap

Revelation Principle

Impossibility

Quasilinear Utility

Revelation Principle

It turns out that truthfulness can always be achieved!
Consider an arbitrary, non-truthful mechanism (e.g., may be indirect)
Recap

Revelation Principle

Impossibility

Quasilinear Utility

Revelation Principle

Original Mechanism

M

outcome

strategy

s

1

(type

θ

1

)

strategy

s

n

(type

θ

n

)

It turns out that truthfulness can always be achieved!

Consider an arbitrary, non-truthful mechanism (e.g., may be indirect)
Recap

Revelation Principle

Impossibility

Quasilinear Utility

Revelation Principle

Original

Mechanism

M

outcome

strategy

s1 (θ1)

strategy

sn (θn)

It turns out that truthfulness can always be achieved!

Consider an arbitrary, non-truthful mechanism (e.g., may be indirect)

Recall that a mechanism defines a game, and consider an equilibrium \(s = (s_1, \ldots, s_n) \)
We can construct a new direct mechanism, as shown above.

This mechanism is truthful by exactly the same argument that s was an equilibrium in the original mechanism.

“The agents don’t have to lie, because the mechanism already lies for them.”
Computation is pushed onto the center
 - often, agents’ strategies will be computationally expensive
 - e.g., in the shortest path problem, agents may need to compute shortest paths, cutsets in the graph, etc.
 - since the center plays equilibrium strategies for the agents, the center now incurs this cost

If computation is intractable, so that it cannot be performed by agents, then in a sense the revelation principle doesn’t hold
 - agents can’t play the equilibrium strategy in the original mechanism
 - however, in this case it’s unclear what the agents will do
Discussion of the Revelation Principle

- The set of equilibria is not always the same in the original mechanism and revelation mechanism
 - of course, we’ve shown that the revelation mechanism does have the original equilibrium of interest
 - however, in the case of indirect mechanisms, even if the indirect mechanism had a unique equilibrium, the revelation mechanism can also have new, bad equilibria
- So what is the revelation principle good for?
 - recognition that truthfulness is not a restrictive assumption
 - for analysis purposes, we can consider only truthful mechanisms, and be assured that such a mechanism exists
 - recognition that indirect mechanisms can’t do (inherently) better than direct mechanisms
Lecture Overview

Recap

Revelation Principle

Impossibility

Quasilinear Utility
Theorem (Gibbard-Satterthwaite)

Consider any social choice function C of N and O. If:

1. $|O| \geq 3$ (there are at least three outcomes);
2. C is onto; that is, for every $o \in O$ there is a preference vector \succ such that $C(\succ) = o$ (this property is sometimes also called citizen sovereignty); and
3. C is dominant-strategy truthful,
then C is dictatorial.
What does this mean?

- We should be discouraged about the possibility of implementing arbitrary social-choice functions in mechanisms.

- However, in practice we can circumvent the Gibbard-Satterthwaite theorem in two ways:
 - use a weaker form of implementation
 - note: the result only holds for dominant strategy implementation, not e.g., Bayes-Nash implementation
 - relax the onto condition and the (implicit) assumption that agents are allowed to hold arbitrary preferences
Lecture Overview

Recap

Revelation Principle

Impossibility

Quasilinear Utility
Definition (Quasilinear preferences)

Agents have **quasilinear preferences** in an n-player Bayesian game when the set of outcomes is $O = X \times \mathbb{R}^n$ for a finite set X, and the utility of an agent i with type θ_i is given by

$$u_i(o, \theta_i) = u_i(x, \theta_i) - f_i(p_i),$$

where $o = (x, p_i)$ is an element of O, $u_i(x, \theta_i)$ is an arbitrary function and $f_i : \mathbb{R} \rightarrow \mathbb{R}$ is a strictly monotonically increasing function.
Quasilinear utility

- \[u_i(o, \theta_i) = u_i(x, \theta_i) - f_i(p_i) \]

- We split the mechanism into a choice rule and a payment rule:
 - \(x \in X \) is a discrete, non-monetary outcome
 - \(p_i \in \mathbb{R} \) is a monetary payment (possibly negative) that agent \(i \) must make to the mechanism

- Implications:
Quasilinear utility

- \(u_i(o, \theta_i) = u_i(x, \theta_i) - f_i(p_i) \)

- We split the mechanism into a choice rule and a payment rule:
 - \(x \in X \) is a discrete, non-monetary outcome
 - \(p_i \in \mathbb{R} \) is a monetary payment (possibly negative) that agent \(i \) must make to the mechanism

- Implications:
 - \(u_i(x, \theta_i) \) is not influenced by the amount of money an agent has
 - agents don’t care how much others are made to pay (though they can care about how the choice affects others.)
Quasilinear utility

- $u_i(o, \theta_i) = u_i(x, \theta_i) - f_i(p_i)$

We split the mechanism into a choice rule and a payment rule:

- $x \in X$ is a discrete, non-monetary outcome
- $p_i \in \mathbb{R}$ is a monetary payment (possibly negative) that agent i must make to the mechanism

Implications:

- $u_i(x, \theta_i)$ is not influenced by the amount of money an agent has
- agents don’t care how much others are made to pay (though they can care about how the choice affects others.)

What is $f_i(p_i)$?