Arrow's Theorem, Mechanism Design

CPSC 532A Lecture 16

October 26, 2006

Arrow's Theorem, Mechanism Design

CPSC 532A Lecture 16, Slide 1

3

<回と < 回と < 回と

Lecture Overview

Course stuff

Recap

Arrow's Theorem

Social Choice Functions

Fun Game

Mechanism Design

æ

< 注→ < 注→

< 🗗 🕨

- Assignment 2: solution posted right after class; graded assignments back Monday from Dave
- Midterm: Tuesday; 2:00 to 3:30
- Project Proposals: Tues Nov 14
- Final exam: December 10, 4:00 PM until December 12, 4:00 PM (take-home exam; paper or electronic submission)
- Projects due: December 19, 11:59:59 PM (electronic submission)
- Project reviews due: January 8, 5 PM

• E • • E • · ·

Lecture Overview

Course stuff

Recap

Arrow's Theorem

Social Choice Functions

Fun Game

Mechanism Design

э

< 注→ < 注→

< 🗗 🕨

Course stuff	Recap	Arrow's Theorem	Social Choice Functions	Fun Game	Mechanism Design
Notation					

- N is the set of agents
- O is a finite set of outcomes with $|O| \ge 3$
- ► L the set of all possible preference orderings over O.
- \blacktriangleright > is an element of the set L^n (a preference ordering for every agent; the input to our social welfare function)
- $\succ \succ_W$ is the preference ordering selected by the social welfare function W.
 - When the input to W is ambiguous we write it in the subscript; thus, the social order selected by W given the input ≻' is denoted as ≻_{W(≻')}.

Pareto Efficiency

Definition (Pareto Efficiency (PE)) W is Pareto efficient if for any $o_1, o_2 \in O$, $\forall i o_1 \succ_i o_2$ implies that $o_1 \succ_W o_2$.

when all agents agree on the ordering of two outcomes, the social welfare function must select that ordering.

★ E ▶ < E ▶</p>

Independence of Irrelevant Alternatives

Definition (Independence of Irrelevant Alternatives (IIA)) W is independent of irrelevant alternatives if, for any $o_1, o_2 \in O$ and any two preference profiles $\succ', \succ'' \in L^n$, $\forall i \ (o_1 \succ'_i \ o_2 \leftrightarrow o_1 \succ''_i \ o_2)$ implies that $o_1 \succ_{W(\succ')} \ o_2 \Leftrightarrow o_1 \succ_{W(\succ'')} \ o_2$.

the selected ordering between two outcomes should depend only on the relative orderings they are given by the agents.

Nondictatorship

Definition (Non-dictatorship)

W does not have a dictator if $\neg \exists i \forall o_1, o_2(o_1 \succ_i o_2 \Rightarrow o_1 \succ_W o_2)$.

- there does not exist a single agent whose preferences always determine the social ordering.
- ▶ We say that W is *dictatorial* if it fails to satisfy this property.

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Lecture Overview

Course stuff

Recap

Arrow's Theorem

Social Choice Functions

Fun Game

Mechanism Design

Arrow's Theorem, Mechanism Design

æ

★ E > < E >

< 🗗 🕨

Arrow's Theorem

Theorem (Arrow, 1951)

Any social welfare function W that is Pareto efficient and independent of irrelevant alternatives is dictatorial.

We will assume that W is both PE and IIA, and show that Wmust be dictatorial. The argument proceeds in four steps.

< ∃ >

If every voter puts an outcome b at either the very top or the very bottom of his preference list, b must be at either the very top or very bottom of \succ_W as well.

3

▲ 문 ▶ | ▲ 문 ▶

< 🗇 🕨

There is some voter n^* who is extremely pivotal in the sense that by changing his vote at some profile, he can move a given outcome b from the bottom of the social ranking to the top.

Consider a preference profile \succ in which every voter ranks b last, and in which preferences are otherwise arbitrary. By PE, W must also rank b last. Now let voters from 1 to n successively modify \succ by moving b from the bottom of their rankings to the top, preserving all other relative rankings. Denote as n^* the first voter whose change causes the social ranking of b to change. There clearly must be some such voter: when the voter n moves b to the top of his ranking, PE will require that b be ranked at the top of the social ranking.

イロト イヨト イヨト イヨト

Course stuff	Recap	Arrow's Theorem	Social Choice Functions	Fun Game	Mechanism Design
Step 2					

There is some voter n^* who is extremely pivotal in the sense that by changing his vote at some profile, he can move a given outcome b from the bottom of the social ranking to the top.

b	∎ b	1	1 c	1		1 b	∎ b	∎ b	c
1				1		1	1		1
1		a				1		• a	
	a						a		
c		c		a		C		с.	
			u	c					
÷ .	1	1.6	6	ь		· · ·	1	· i	ь
-	•		• -	• -		-		-	-
1	n*-1	n^*	n^{+1}	N		1	n°-1	n^*	n*+ 1

Denote by \succ^1 the set of preferences just before n^* moves b, and denote by \succ^2 the set of preferences just after n^* has moved b to the top of his ranking. In \succ^1 , b is at the bottom in \succ_W . In \succ^2 , b has changed its position in \succ_W , and every voter ranks b at either the top or the bottom. By the argument from Step 1, in $\succ^2 b$ must be ranked at the top of \succ_W .

 n^* (the agent who is extremely pivotal on outcome b) is a dictator over any pair ac not involving b.

We begin by choosing one element from the pair ac; without loss of generality, let's choose a. We'll construct a new preference profile \succ^3 from \succ^2 by making two changes. First, we move a to the top of n^* 's preference ordering, leaving it otherwise unchanged; thus $a \succ_{n^*} b \succ_{n^*} c$. Second, we arbitrarily rearrange the relative rankings of a and c for all voters other than n^* , while leaving b in its extremal position.

3

・回 ・ ・ ヨ ・ ・ ヨ ・ …

 n^* (the agent who is extremely pivotal on outcome b) is a dictator over any pair ac not involving b.

In \succ^1 we had $a \succ_W b$, as b was at the very bottom of \succ_W . When we compare \succ^1 to \succ^3 , relative rankings between a and b are the same for all voters. Thus, by IIA, we must have $a \succ_W b$ in \succ^3 as well. In \succ^2 we had $b \succ_W c$, as b was at the very top of \succ_W . Relative rankings between b and c are the same in \succ^2 and \succ^3 . Thus in \succ^3 , $b \succ_W c$. Using the two above facts about \succ^3 and transitivity, we can conclude that $a \succ_W c$ in \succ^3 .

3

個 と く ヨ と く ヨ と …

Course s	tuff	Recap)	Arrow's	Theo	rem		Socia	I Choic	e Fu	incti	ons	F	^c un G	iame	Ν	lech	anism	Desi	gn
Step 3	3																			
6 6 8		c	c c b	b c c		b c	 a b	u c b	b 			a c c	I C I I I I I I I I I I I I I I I I I I		a c b	b a		ι c ι ι ι ι ι ι ι ι ι ι ι ι ι ι ι ι		

n^* (the agent who is extremely pivotal on outcome b) is a dictator over any pair ac not involving b.

Now construct one more preference ordering, \succ^4 , by changing \succ^3 in two ways. First, arbitrarily change the position of b in each voter's ordering while keeping all other relative preferences the same. Second, move a to an arbitrary position in n^* 's preference ordering, with the constraint that a remains ranked higher than c. Observe that all voters other than n^* have entirely arbitrary preferences in \succ^4 , while n^* 's preferences are arbitrary except that $a \succ_{n^*} c$.

Course stuff	Recap	Arrow's Theorem	Social Choice Functions	Fun Game	Mechanism Design
Step 3					
	c a a a b b b			с а с с в b b	α μ μ

 n^* (the agent who is extremely pivotal on outcome b) is a dictator over any pair ac not involving b.

In \succ^3 and \succ^4 all agents have the same relative preferences between aand c; thus, since $a \succ_W c$ in \succ^3 and by IIA, $a \succ_W c$ in \succ^4 . Thus we have determined the social preference between a and c without assuming anything except that $a \succ_{n^*} c$.

n^* is a dictator over all pairs ab.

Consider some third outcome c. By the argument in Step 2, there is a voter n^{**} who is extremely pivotal for c. By the argument in Step 3, n^{**} is a dictator over any pair $\alpha\beta$ not involving c. Of course, ab is such a pair $\alpha\beta$. We have already observed that n^* is able to affect W's ab ranking—for example, when n^* was able to change $a \succ_W b$ in profile \succ^1 into $b \succ_W a$ in profile \succ^2 . Hence, n^{**} and n^* must be the same agent.

3

Lecture Overview

Course stuff

Recap

Arrow's Theorem

Social Choice Functions

Fun Game

Mechanism Design

Arrow's Theorem, Mechanism Design

3

< 注→ < 注→

< 🗇 🕨

Social Choice Functions

- Maybe Arrow's theorem held because we required a whole preference ordering.
- Idea: social choice functions might be easier to find
- We'll need to redefine our criteria for the social choice function setting; PE and IIA discussed the ordering

< ∃ >

Weak Pareto Efficiency

Definition (Weak Pareto Efficiency)

A social choice function C is weakly Pareto efficient if, for any preference profile $\succ = (\succ_1, \ldots, \succ_n)$ (where $\succ_i \in L$), if there exist a pair of outcomes o_1 and o_2 such that $\forall i \in N$, $o_1 \succ_i o_2$, then $C(\succ) \neq o_2$.

A dominated outcome can't be chosen.

Definition (Monotonicity)

C is monotonic if, for any $o \in O$ and any preference profile $\succ = (\succ_1, \ldots, \succ_n)$ with $C(\succ) = o$, then for any other preference profile \succ' with the property that $\forall i \in N, \forall o' \in O, o \succ'_i o'$ if $o \succ_i o'$, it must be that $C(\succ') = o$.

an outcome o must remain the winner whenever the support for it is increased relative to a preference profile under which o was already winning

- 4 同 6 4 日 6 4 日 6 - 日

Non-dictatorship

Definition (Non-dictatorship)

C is non-dictatorial if there does not exist an agent j such that C always selects the top choice in j's preference ordering.

3 ×

Theorem (Muller-Satterthwaite, 1977)

Any social choice function that is weakly Pareto efficient and monotonic is dictatorial.

- perhaps contrary to intuition, social choice functions are no simpler than social welfare functions after all.
- The proof repeatedly 'probes' a social choice function to determine the relative social ordering between given pairs of outcomes.
- Because the function must be defined for all inputs, we can use this technique to construct a full social welfare ordering.

Lecture Overview

Course stuff

Recap

Arrow's Theorem

Social Choice Functions

Fun Game

Mechanism Design

Arrow's Theorem, Mechanism Design

э

< 注→ < 注→

< 🗗 🕨

- ▶ 8 people play as agents A H; the others act as mediators.
- Agents' utility functions: u_i = payment cost if your edge is chosen; 0 otherwise.
- Mediators: find me a path from source to sink, at the lowest cost you can.
- Agents: agree to be paid whatever you like; claim whatever you like; however, you can't show your paper to anyone.

Lecture Overview

Course stuff

Recap

Arrow's Theorem

Social Choice Functions

Fun Game

Mechanism Design

Arrow's Theorem, Mechanism Design

3

< 注→ < 注→

< 🗇 🕨

Mechanism Design

Extend the social choice setting to a new setting where agents can't be relied upon to disclose their preferences honestly.

Definition (Mechanism)

A mechanism (over a set of agents N and a set of outcomes ${\cal O})$ is a pair (A,M), where

- ▶ $A = A_1 \times \cdots \times A_n$, where A_i is the set of actions available to agent $i \in N$, and
- ► $M : A \to \Pi(O)$ maps each action profile to a distribution over outcomes.

Thus, the designer gets to specify

- the action sets for the agents (though they may be constrained by the environment)
- the mapping to outcomes, over which agents have utility
- can't change agents' preferences for outcomes or type spaces

What we're up to

- The problem is to pick a mechanism that will cause rational agents to behave in a particular way, in order to maximize the mechanism designer's own "utility" or objective function
 - each agent holds private information, in the Bayesian game sense
 - often, we're interested in settings where agents' action space is identical to their type space, and an action can be interpreted as a declaration of the agent's type
- Various equivalent ways of looking at this setting
 - perform an optimization problem, given that the values of (some of) the inputs are unknown
 - choose the Bayesian game out of a set of possible Bayesian games that maximizes some performance measure
 - design a game that *implements* a particular social choice function in equilibrium, given that the designer no longer knows agents' preferences and the agents might lie

Implementation in Dominant Strategies

Definition (Implementation in dominant strategies)

A mechanism (A, M) (over N and O) is an implementation in dominant strategies of a social choice function C over (N and O) if for any vector of utility functions u, the game (N, A, O, M, u)has an equilibrium in dominant strategies, and in any such equilibrium a^* we have $M(a^*) = C(u)$.

(4) (5) (4) (5) (4)

Fun Game

Implementation in Bayes-Nash equilibrium

Definition (Bayes-Nash implementation)

We begin with a mechanism (A, M) over N and O. Let $\Theta = \Theta_1 \times \cdots \times \Theta_n$ denote the set of all possible type vectors $\theta = (\theta_1, \ldots, \theta_n)$, and denote agent *i*'s utility as $u_i : O \times \Theta \to \mathbb{R}$. Let p be a (common prior) probability distribution on Θ (and hence on u). Then (A, M) is a Bayes-Nash implementation of a social choice function C, with respect to Θ and p, if there exists a Bayes-Nash equilibrium of the game of incomplete information (N, A, Θ, p, u) such that for every $\theta \in \Theta$ and every action profile $a \in A$ that can arise given type profile θ in this equilibrium, we have that $M(a) = C(u(\cdot, \theta))$.

(日) (四) (王) (王) (王)

Bayes-Nash Implementation Comments

Bayes-Nash Equilibrium Problems:

- there could be more than one equilibrium
 - which one should I expect agents to play?
- agents could miscoordinate and play none of the equilibria
- asymmetric equilibria are implausible

Refinements:

- Symmetric Bayes-Nash implementation
- Ex-post Bayes-Nash implementation

Implementation Comments

We can require that the desired outcome arises

- in the only equilibrium
- in every equilibrium
- in at least one equilibrium
- Forms of implementation
 - Direct Implementation: agents each simultaneously send a single message to the center
 - Indirect Implementation: agents may send a sequence of messages; in between, information may be (partially) revealed about the messages that were sent previously like extensive form

A B M
 A
 B M
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A