Social Choice, Arrow’s Theorem

CPSC 532A Lecture 15

October 26, 2006
Recap

Voting Paradoxes

Fun Game

Properties

Arrow’s Theorem
Ex-post expected utility

Definition (Ex-post expected utility)

Agent i’s *ex-post expected utility* in a Bayesian game (N, A, Θ, p, u), where the agents’ strategies are given by s and the agent’s types are given by θ, is defined as

$$EU_i(s, \theta) = \sum_{a \in A} \left(\prod_{j \in N} s_j(a_j | \theta_j) \right) u_i(a, \theta).$$

- The only uncertainty here concerns the other agents’ mixed strategies, since i knows everyone’s type.
Ex-interim expected utility

Definition (Ex-interim expected utility)

Agent i’s *ex-interim expected utility* in a Bayesian game (N, A, Θ, p, u), where i’s type is θ_i and where the agents’ strategies are given by the mixed strategy profile s, is defined as

$$EU_i(s|\theta_i) = \sum_{\theta_{-i} \in \Theta_{-i}} p(\theta_{-i}|\theta_i) \sum_{a \in A} \left(\prod_{j \in N} s_j(a_j|\theta_j) \right) u_i(a, \theta_{-i}, \theta_i).$$

- i must consider every θ_{-i} and every a in order to evaluate $u_i(a, \theta_i, \theta_{-i})$.
- i must weight this utility value by:
 - the probability that a would be realized given all players’ mixed strategies and types;
 - the probability that the other players’ types would be θ_{-i} given that his own type is θ_i.

Social Choice, Arrow’s Theorem

CPSC 532A Lecture 15, Slide 4
Definition (Ex-ante expected utility)

Agent i’s \textit{ex-ante expected utility} in a Bayesian game (N, A, Θ, p, u), where the agents’ strategies are given by the mixed strategy profile s, is defined as

\[
EU_i(s) = \sum_{\theta_i \in \Theta_i} p(\theta_i) EU_i(s|\theta_i)
\]

or equivalently as

\[
EU_i(s) = \sum_{\theta \in \Theta} p(\theta) \sum_{a \in A} \left(\prod_{j \in N} s_j(a_j|\theta_j) \right) u_i(a, \theta).
\]
Nash equilibrium

Definition (Bayes-Nash equilibrium)

A Bayes-Nash equilibrium is a mixed strategy profile s that satisfies
$\forall i \ s_i \in BR_i(s_{-i})$.

Definition (ex-post Bayes-Nash equilibrium)

A ex-post Bayes-Nash equilibrium is a mixed strategy profile s that satisfies
$\forall \theta, \forall i, s_i \in \arg \max_{s_i' \in S_i} EU_i(s_i', s_{-i}, \theta)$.

► almost a dominant strategy, but not quite
Social Choice

Definition (Social choice function)
Assume a set of agents $N = \{1, 2, \ldots, n\}$, and a set of outcomes (or alternatives, or candidates) O. Let L be the set of strict total orders on O. A social choice function (over N and O) is a function $C : L^n \to O$.

Definition (Social welfare function)
Let N, O, L be as above. A social welfare function (over N and O) is a function $W : L^n \to L^-$, where L^- is the set of weak total orderings (that is, total preorders) on O.
Some Voting Schemes

- **Plurality**
 - pick the outcome which is preferred by the most people

- **Plurality with elimination ("instant runoff")**
 - everyone selects their favorite outcome
 - the outcome with the fewest votes is eliminated
 - repeat until one outcome remains

- **Borda**
 - assign each outcome a number.
 - The most preferred outcome gets a score of \(n - 1 \), the next most preferred gets \(n - 2 \), down to the \(n^{th} \) outcome which gets 0.
 - Then sum the numbers for each outcome, and choose the one that has the highest score

- **Pairwise elimination**
 - in advance, decide a schedule for the order in which pairs will be compared.
 - given two outcomes, have everyone determine the one that they prefer
Condorcet Condition

- If there is a candidate who is preferred to every other candidate in pairwise runoffs, that candidate should be the winner.
- While the Condorcet condition is considered an important property for a voting system to satisfy, there is not always a Condorcet winner.
- Sometimes, there's a cycle where A defeats B, B defeats C, and C defeats A in their pairwise runoffs.
<table>
<thead>
<tr>
<th>Recap</th>
<th>Voting Paradoxes</th>
<th>Fun Game</th>
<th>Properties</th>
<th>Arrow’s Theorem</th>
</tr>
</thead>
</table>

Lecture Overview
Sensitivity to Losing Candidate

35 agents: $A \succ C \succ B$
33 agents: $B \succ A \succ C$
32 agents: $C \succ B \succ A$

▶ What candidate wins under plurality voting?
Sensitivity to Losing Candidate

35 agents: $A \succ C \succ B$
33 agents: $B \succ A \succ C$
32 agents: $C \succ B \succ A$

What candidate wins under plurality voting? A
Sensitivity to Losing Candidate

- 35 agents: $A \succ C \succ B$
- 33 agents: $B \succ A \succ C$
- 32 agents: $C \succ B \succ A$

- What candidate wins under plurality voting? A
- What candidate wins under Borda voting?
Sensitivity to Losing Candidate

35 agents: \(A \succ C \succ B \)
33 agents: \(B \succ A \succ C \)
32 agents: \(C \succ B \succ A \)

- What candidate wins under plurality voting? \(A \)
- What candidate wins under Borda voting? \(A \)
Sensitivity to Losing Candidate

- 35 agents: $A \succ C \succ B$
- 33 agents: $B \succ A \succ C$
- 32 agents: $C \succ B \succ A$

- What candidate wins under plurality voting? A
- What candidate wins under Borda voting? A
- Now consider dropping C. Now what happens under both Borda and plurality?
Sensitivity to Losing Candidate

- What candidate wins under plurality voting? A
- What candidate wins under Borda voting? A
- Now consider dropping C. Now what happens under both Borda and plurality? B wins.
Sensitivity to Agenda Setter

35 agents: $A \succ C \succ B$
33 agents: $B \succ A \succ C$
32 agents: $C \succ B \succ A$

- Who wins pairwise elimination, with the ordering A, B, C?
Sensitivity to Agenda Setter

- 35 agents: $A \succ C \succ B$
- 33 agents: $B \succ A \succ C$
- 32 agents: $C \succ B \succ A$

—who wins pairwise elimination, with the ordering A, B, C? C
Sensitivity to Agenda Setter

35 agents: \(A \succ C \succ B \)
33 agents: \(B \succ A \succ C \)
32 agents: \(C \succ B \succ A \)

- Who wins pairwise elimination, with the ordering \(A, B, C \)? \(C \)
- Who wins with the ordering \(A, C, B \)?
Sensitivity to Agenda Setter

35 agents: $A \succ C \succ B$
33 agents: $B \succ A \succ C$
32 agents: $C \succ B \succ A$

- Who wins pairwise elimination, with the ordering A, B, C? C
- Who wins with the ordering A, C, B? B
Sensitivity to Agenda Setter

35 agents: \(A \succ C \succ B \)
33 agents: \(B \succ A \succ C \)
32 agents: \(C \succ B \succ A \)

- Who wins pairwise elimination, with the ordering \(A, B, C \)? \(C \)
- Who wins with the ordering \(A, C, B \)? \(B \)
- Who wins with the ordering \(B, C, A \)?
Sensitivity to Agenda Setter

- 35 agents: $A \succ C \succ B$
- 33 agents: $B \succ A \succ C$
- 32 agents: $C \succ B \succ A$

- Who wins pairwise elimination, with the ordering A, B, C? C
- Who wins with the ordering A, C, B? B
- Who wins with the ordering B, C, A? A
Another Pairwise Elimination Problem

1 agent: \[B \succ D \succ C \succ A \]
1 agent: \[A \succ B \succ D \succ C \]
1 agent: \[C \succ A \succ B \succ D \]

Who wins under pairwise elimination with the ordering \(A, B, C, D \)?
Another Pairwise Elimination Problem

1 agent: \(B \succ D \succ C \succ A \)

1 agent: \(A \succ B \succ D \succ C \)

1 agent: \(C \succ A \succ B \succ D \)

Who wins under pairwise elimination with the ordering \(A, B, C, D \)? \(D \).
Another Pairwise Elimination Problem

1 agent: \(B \succ D \succ C \succ A \)
1 agent: \(A \succ B \succ D \succ C \)
1 agent: \(C \succ A \succ B \succ D \)

- Who wins under pairwise elimination with the ordering \(A, B, C, D \)? \(D \).
- What is the problem with this?
Another Pairwise Elimination Problem

1 agent: \(B \succ D \succ C \succ A \)
1 agent: \(A \succ B \succ D \succ C \)
1 agent: \(C \succ A \succ B \succ D \)

Who wins under pairwise elimination with the ordering \(A, B, C, D? \) \(D \).

What is the problem with this?

- all of the agents prefer \(B \) to \(D \)—the selected candidate is Pareto-dominated!
Lecture Overview

Recap

Voting Paradoxes

Fun Game

Properties

Arrow’s Theorem
Fun Game

- Imagine that there was an opportunity to take a one-week class trip at the end of term, to one of the following destinations:
 - (O) Orlando, FL
 - (L) London, England
 - (M) Moscow, Russia
 - (B) Beijing, China

- Construct your preference ordering
Fun Game

- Imagine that there was an opportunity to take a one-week class trip at the end of term, to one of the following destinations:
 - (O) Orlando, FL
 - (L) London, England
 - (M) Moscow, Russia
 - (B) Beijing, China
- Construct your preference ordering
- Vote (truthfully) using each of the following schemes:
 - plurality (raise hands)
Imagine that there was an opportunity to take a one-week class trip at the end of term, to one of the following destinations:

- (O) Orlando, FL
- (L) London, England
- (M) Moscow, Russia
- (B) Beijing, China

Construct your preference ordering

Vote (truthfully) using each of the following schemes:

- plurality (raise hands)
- plurality with elimination (raise hands)
Imagine that there was an opportunity to take a one-week class trip at the end of term, to one of the following destinations:

- (O) Orlando, FL
- (L) London, England
- (M) Moscow, Russia
- (B) Beijing, China

Construct your preference ordering

Vote (truthfully) using each of the following schemes:

- plurality (raise hands)
- plurality with elimination (raise hands)
- Borda (volunteer to tabulate)
Imagine that there was an opportunity to take a one-week class trip at the end of term, to one of the following destinations:

- (O) Orlando, FL
- (L) London, England
- (M) Moscow, Russia
- (B) Beijing, China

Construct your preference ordering

Vote (truthfully) using each of the following schemes:

- plurality (raise hands)
- plurality with elimination (raise hands)
- Borda (volunteer to tabulate)
- pairwise elimination (raise hands, I'll pick a schedule)
Lecture Overview

Recap

Voting Paradoxes

Fun Game

Properties

Arrow’s Theorem
Notation

- N is the set of agents
- O is a finite set of outcomes with $|O| \geq 3$
- L the set of all possible preference orderings over O.
- \succ is an element of the set L^n (a preference ordering for every agent; the input to our social welfare function)
- \succ_W is the preference ordering selected by the social welfare function W.
 - When the input to W is ambiguous we write it in the subscript; thus, the social order selected by W given the input \succ' is denoted as $\succ_W(\succ')$.
Pareto Efficiency

Definition (Pareto Efficiency (PE))

W is **Pareto efficient** if for any $o_1, o_2 \in O$, $\forall i o_1 \succ_i o_2$ implies that $o_1 \succ_W o_2$.

- when all agents agree on the ordering of two outcomes, the social welfare function must select that ordering.
Independence of Irrelevant Alternatives

Definition (Independence of Irrelevant Alternatives (IIA))

W is **independent of irrelevant alternatives** if, for any $o_1, o_2 \in O$ and any two preference profiles $\succ', \succ'' \in L^n$,

$$\forall i \left(o_1 \succ'_i o_2 \iff o_1 \succ''_i o_2 \right)$$

implies that

$$o_1 \succ_W (\succ') o_2 \iff o_1 \succ_W (\succ'') o_2.$$

- the selected ordering between two outcomes should depend only on the relative orderings they are given by the agents.
Definition (Non-dictatorship)

\(W \) does not have a dictator if \(\neg \exists i: \forall o_1, o_2 (o_1 \succ_i o_2 \Rightarrow o_1 \succ_W o_2) \).

- there does not exist a single agent whose preferences always determine the social ordering.
- We say that \(W \) is \textit{dictatorial} if it fails to satisfy this property.
Lecture Overview

Recap

Voting Paradoxes

Fun Game

Properties

Arrow’s Theorem
Arrow’s Theorem

Theorem (Arrow, 1951)

Any social welfare function \(W \) that is Pareto efficient and independent of irrelevant alternatives is dictatorial.

We will assume that \(W \) is both PE and IIA, and show that \(W \) must be dictatorial. The argument proceeds in four steps.
Step 1

If every voter puts an outcome b at either the very top or the very bottom of his preference list, b must be at either the very top or very bottom of \succ_W as well.

Consider an arbitrary preference profile \succ in which every voter ranks some $b \in O$ at either the very bottom or very top, and assume for contradiction that the above claim is not true. Then, there must exist some pair of distinct outcomes $a, c \in O$ for which $a \succ_W b$ and $b \succ_W c$.
Step 1

If every voter puts an outcome b at either the very top or the very bottom of his preference list, b must be at either the very top or very bottom of \succ_W as well.

Now let’s modify \succ so that every voter moves c just above a in his preference ranking, and otherwise leaves the ranking unchanged; let’s call this new preference ordering \succ'. We know from IIA that for $a \succ_W b$ or $b \succ_W c$ to change, the pairwise relationship between a and b and/or the pairwise relationship between b and c would have to change. However, since b occupies an extremal position for all voters, c can be moved above a without changing either of these pairwise relationships. Thus in profile \succ' it is also the case that $a \succ_W b$ and $b \succ_W c$. From this fact and from transitivity, we have that $a \succ_W c$. However, in \succ' every voter ranks c above a and so PE requires that $c \succ_W a$. We have a contradiction.