Social Choice, Arrow's Theorem

CPSC 532A Lecture 15

October 26, 2006

Lecture Overview

Recap

Voting Paradoxes

Fun Game

Properties

Arrow's Theorem

Ex-post expected utility

Definition (Ex-post expected utility)

Agent i 's ex-post expected utility in a Bayesian game
(N, A, Θ, p, u), where the agents' strategies are given by s and the agent' types are given by θ, is defined as

$$
E U_{i}(s, \theta)=\sum_{a \in A}\left(\prod_{j \in N} s_{j}\left(a_{j} \mid \theta_{j}\right)\right) u_{i}(a, \theta)
$$

- The only uncertainty here concerns the other agents' mixed strategies, since i knows everyone's type.

Ex-interim expected utility

Definition (Ex-interim expected utility)

Agent i 's ex-interim expected utility in a Bayesian game (N, A, Θ, p, u), where i 's type is θ_{i} and where the agents' strategies are given by the mixed strategy profile s, is defined as

$$
E U_{i}\left(s \mid \theta_{i}\right)=\sum_{\theta_{-i} \in \Theta_{-i}} p\left(\theta_{-i} \mid \theta_{i}\right) \sum_{a \in A}\left(\prod_{j \in N} s_{j}\left(a_{j} \mid \theta_{j}\right)\right) u_{i}\left(a, \theta_{-i}, \theta_{i}\right) .
$$

- i must consider every θ_{-i} and every a in order to evaluate $u_{i}\left(a, \theta_{i}, \theta_{-i}\right)$.
- i must weight this utility value by:
- the probability that a would be realized given all players' mixed strategies and types;
- the probability that the other players' types would be θ_{-i} given that his own type is θ_{i}.

Ex-ante expected utility

Definition (Ex-ante expected utility)

Agent i 's ex-ante expected utility in a Bayesian game (N, A, Θ, p, u), where the agents' strategies are given by the mixed strategy profile s, is defined as

$$
E U_{i}(s)=\sum_{\theta_{i} \in \Theta_{i}} p\left(\theta_{i}\right) E U_{i}\left(s \mid \theta_{i}\right)
$$

or equivalently as

$$
E U_{i}(s)=\sum_{\theta \in \Theta} p(\theta) \sum_{a \in A}\left(\prod_{j \in N} s_{j}\left(a_{j} \mid \theta_{j}\right)\right) u_{i}(a, \theta)
$$

Nash equilibrium

Definition (Bayes-Nash equilibrium)

A Bayes-Nash equilibrium is a mixed strategy profile s that satisfies $\forall i \quad s_{i} \in B R_{i}\left(s_{-i}\right)$.

Definition (ex-post Bayes-Nash equilibrium)

A ex-post Bayes-Nash equilibrium is a mixed strategy profile s that satisfies $\forall \theta, \forall i, s_{i} \in \arg \max _{s_{i}^{\prime} \in S_{i}} E U_{i}\left(s_{i}^{\prime}, s_{-i}, \theta\right)$.

- almost a dominant strategy, but not quite

Social Choice

Definition (Social choice function)

Assume a set of agents $N=\{1,2, \ldots, n\}$, and a set of outcomes (or alternatives, or candidates) O. Let L be the set of strict total orders on O. A social choice function (over N and O) is a function $C: L^{n} \rightarrow O$.

Definition (Social welfare function)
Let N, O, L be as above. A social welfare function (over N and O) is a function $W: L^{n} \rightarrow L^{-}$, where L^{-}is the set of weak total orderings (that is, total preorders) on O .

Some Voting Schemes

- Plurality
- pick the outcome which is preferred by the most people
- Plurality with elimination ("instant runoff")
- everyone selects their favorite outcome
- the outcome with the fewest votes is eliminated
- repeat until one outcome remains
- Borda
- assign each outcome a number.
- The most preferred outcome gets a score of $n-1$, the next most preferred gets $n-2$, down to the $n^{\text {th }}$ outcome which gets 0 .
- Then sum the numbers for each outcome, and choose the one that has the highest score
- Pairwise elimination
- in advance, decide a schedule for the order in which pairs will be compared.
- given two outcomes, have everyone determine the one that they prefer

Condorcet Condition

- If there is a candidate who is preferred to every other candidate in pairwise runoffs, that candidate should be the winner
- While the Condorcet condition is considered an important property for a voting system to satisfy, there is not always a Condorcet winner
- sometimes, there's a cycle where A defeats B, B defeats C, and C defeats A in their pairwise runoffs

Lecture Overview

Recap

Voting Paradoxes

Fun Game

Properties

Arrow's Theorem

Sensitivity to Losing Candidate

$$
\begin{array}{ll}
35 \text { agents: } & A \succ C \succ B \\
33 \text { agents: } & B \succ A \succ C \\
32 \text { agents: } & C \succ B \succ A
\end{array}
$$

- What candidate wins under plurality voting?

Sensitivity to Losing Candidate

$$
\begin{array}{ll}
35 \text { agents: } & A \succ C \succ B \\
33 \text { agents: } & B \succ A \succ C \\
32 \text { agents: } & C \succ B \succ A
\end{array}
$$

- What candidate wins under plurality voting? A

Sensitivity to Losing Candidate

$$
\begin{array}{ll}
35 \text { agents: } & A \succ C \succ B \\
33 \text { agents: } & B \succ A \succ C \\
32 \text { agents: } & C \succ B \succ A
\end{array}
$$

- What candidate wins under plurality voting? A
- What candidate wins under Borda voting?

Sensitivity to Losing Candidate

$$
\begin{array}{ll}
35 \text { agents: } & A \succ C \succ B \\
33 \text { agents: } & B \succ A \succ C \\
32 \text { agents: } & C \succ B \succ A
\end{array}
$$

- What candidate wins under plurality voting? A
- What candidate wins under Borda voting? A

Sensitivity to Losing Candidate

$$
\begin{array}{ll}
35 \text { agents: } & A \succ C \succ B \\
33 \text { agents: } & B \succ A \succ C \\
32 \text { agents: } & C \succ B \succ A
\end{array}
$$

- What candidate wins under plurality voting? A
- What candidate wins under Borda voting? A
- Now consider dropping C. Now what happens under both Borda and plurality?

Sensitivity to Losing Candidate

$$
\begin{array}{ll}
35 \text { agents: } & A \succ C \succ B \\
33 \text { agents: } & B \succ A \succ C \\
32 \text { agents: } & C \succ B \succ A
\end{array}
$$

- What candidate wins under plurality voting? A
- What candidate wins under Borda voting? A
- Now consider dropping C. Now what happens under both Borda and plurality? B wins.

Sensitivity to Agenda Setter

$$
\begin{array}{ll}
35 \text { agents: } & A \succ C \succ B \\
33 \text { agents: } & B \succ A \succ C \\
32 \text { agents: } & C \succ B \succ A
\end{array}
$$

- Who wins pairwise elimination, with the ordering A, B, C ?

Sensitivity to Agenda Setter

$$
\begin{array}{ll}
35 \text { agents: } & A \succ C \succ B \\
33 \text { agents: } & B \succ A \succ C \\
32 \text { agents: } & C \succ B \succ A
\end{array}
$$

- Who wins pairwise elimination, with the ordering $A, B, C ? C$

Sensitivity to Agenda Setter

$$
\begin{array}{ll}
35 \text { agents: } & A \succ C \succ B \\
33 \text { agents: } & B \succ A \succ C \\
32 \text { agents: } & C \succ B \succ A
\end{array}
$$

- Who wins pairwise elimination, with the ordering $A, B, C ? C$
- Who wins with the ordering A, C, B ?

Sensitivity to Agenda Setter

$$
\begin{array}{ll}
35 \text { agents: } & A \succ C \succ B \\
33 \text { agents: } & B \succ A \succ C \\
32 \text { agents: } & C \succ B \succ A
\end{array}
$$

- Who wins pairwise elimination, with the ordering $A, B, C ? C$
- Who wins with the ordering A, C, B ? B

Sensitivity to Agenda Setter

$$
\begin{array}{ll}
35 \text { agents: } & A \succ C \succ B \\
33 \text { agents: } & B \succ A \succ C \\
32 \text { agents: } & C \succ B \succ A
\end{array}
$$

- Who wins pairwise elimination, with the ordering $A, B, C ? C$
- Who wins with the ordering A, C, B ? B
- Who wins with the ordering B, C, A ?

Sensitivity to Agenda Setter

$$
\begin{array}{ll}
35 \text { agents: } & A \succ C \succ B \\
33 \text { agents: } & B \succ A \succ C \\
32 \text { agents: } & C \succ B \succ A
\end{array}
$$

- Who wins pairwise elimination, with the ordering $A, B, C ? C$
- Who wins with the ordering A, C, B ? B
- Who wins with the ordering B, C, A ? A

Another Pairwise Elimination Problem

$$
\begin{array}{ll}
1 \text { agent: } & B \succ D \succ C \succ A \\
1 \text { agent: } & A \succ B \succ D \succ C \\
1 \text { agent: } & C \succ A \succ B \succ D
\end{array}
$$

- Who wins under pairwise elimination with the ordering A, B, C, D ?

Another Pairwise Elimination Problem

$$
\begin{array}{ll}
1 \text { agent: } & B \succ D \succ C \succ A \\
1 \text { agent: } & A \succ B \succ D \succ C \\
1 \text { agent: } & C \succ A \succ B \succ D
\end{array}
$$

- Who wins under pairwise elimination with the ordering A, B, C, D ? D.

Another Pairwise Elimination Problem

$$
\begin{array}{ll}
1 \text { agent: } & B \succ D \succ C \succ A \\
1 \text { agent: } & A \succ B \succ D \succ C \\
1 \text { agent: } & C \succ A \succ B \succ D
\end{array}
$$

- Who wins under pairwise elimination with the ordering A, B, C, D ? D.
- What is the problem with this?

Another Pairwise Elimination Problem

$$
\begin{array}{ll}
1 \text { agent: } & B \succ D \succ C \succ A \\
1 \text { agent: } & A \succ B \succ D \succ C \\
1 \text { agent: } & C \succ A \succ B \succ D
\end{array}
$$

- Who wins under pairwise elimination with the ordering A, B, C, D ? D.
- What is the problem with this?
- all of the agents prefer B to D-the selected candidate is Pareto-dominated!

Lecture Overview

Recap
 Voting Paradoxes

Fun Game

Properties

Arrow's Theorem

Fun Game

- Imagine that there was an opportunity to take a one-week class trip at the end of term, to one of the following destinations:
- (O) Orlando, FL
- (L) London, England
- (M) Moscow, Russia
- (B) Beijing, China
- Construct your preference ordering

Fun Game

- Imagine that there was an opportunity to take a one-week class trip at the end of term, to one of the following destinations:
- (O) Orlando, FL
- (L) London, England
- (M) Moscow, Russia
- (B) Beijing, China
- Construct your preference ordering
- Vote (truthfully) using each of the following schemes:
- plurality (raise hands)

Fun Game

- Imagine that there was an opportunity to take a one-week class trip at the end of term, to one of the following destinations:
- (O) Orlando, FL
- (L) London, England
- (M) Moscow, Russia
- (B) Beijing, China
- Construct your preference ordering
- Vote (truthfully) using each of the following schemes:
- plurality (raise hands)
- plurality with elimination (raise hands)

Fun Game

- Imagine that there was an opportunity to take a one-week class trip at the end of term, to one of the following destinations:
- (O) Orlando, FL
- (L) London, England
- (M) Moscow, Russia
- (B) Beijing, China
- Construct your preference ordering
- Vote (truthfully) using each of the following schemes:
- plurality (raise hands)
- plurality with elimination (raise hands)
- Borda (volunteer to tabulate)

Fun Game

- Imagine that there was an opportunity to take a one-week class trip at the end of term, to one of the following destinations:
- (O) Orlando, FL
- (L) London, England
- (M) Moscow, Russia
- (B) Beijing, China
- Construct your preference ordering
- Vote (truthfully) using each of the following schemes:
- plurality (raise hands)
- plurality with elimination (raise hands)
- Borda (volunteer to tabulate)
- pairwise elimination (raise hands, I'll pick a schedule)

Lecture Overview

Recap
 Voting Paradoxes

Fun Game

Properties

Arrow's Theorem

Notation

- N is the set of agents
- O is a finite set of outcomes with $|O| \geq 3$
- L the set of all possible preference orderings over O.
- \succ is an element of the set L^{n} (a preference ordering for every agent; the input to our social welfare function)
- \succ_{W} is the preference ordering selected by the social welfare function W.
- When the input to W is ambiguous we write it in the subscript; thus, the social order selected by W given the input \succ^{\prime} is denoted as $\succ_{W\left(\succ^{\prime}\right)}$.

Pareto Efficiency

Definition (Pareto Efficiency (PE))

W is Pareto efficient if for any $o_{1}, o_{2} \in O, \forall i o_{1} \succ_{i} o_{2}$ implies that $o_{1} \succ_{W} o_{2}$.

- when all agents agree on the ordering of two outcomes, the social welfare function must select that ordering.

Independence of Irrelevant Alternatives

Definition (Independence of Irrelevant Alternatives (IIA))

W is independent of irrelevant alternatives if, for any $o_{1}, o_{2} \in O$ and any two preference profiles $\succ^{\prime}, \succ^{\prime \prime} \in L^{n}$,
$\forall i\left(o_{1} \succ_{i}^{\prime} o_{2} \leftrightarrow o_{1} \succ_{i}^{\prime \prime} o_{2}\right)$ implies that
$o_{1} \succ_{W\left(\succ^{\prime}\right)} o_{2} \Leftrightarrow o_{1} \succ_{W\left(\succ^{\prime \prime}\right)} o_{2}$.

- the selected ordering between two outcomes should depend only on the relative orderings they are given by the agents.

Nondictatorship

Definition (Non-dictatorship)
 W does not have a dictator if $\neg \exists i \forall o_{1}, o_{2}\left(o_{1} \succ_{i} o_{2} \Rightarrow o_{1} \succ_{W} o_{2}\right)$.

- there does not exist a single agent whose preferences always determine the social ordering.
- We say that W is dictatorial if it fails to satisfy this property.

Lecture Overview

Recap

Voting Paradoxes

Fun Game

Properties
Arrow's Theorem

Arrow's Theorem

Theorem (Arrow, 1951)
Any social welfare function W that is Pareto efficient and independent of irrelevant alternatives is dictatorial.

We will assume that W is both PE and IIA, and show that W must be dictatorial. The argument proceeds in four steps.

Step 1

If every voter puts an outcome b at either the very top or the very bottom of his preference list, b must be at either the very top or very bottom of \succ_{W} as well.

Consider an arbitrary preference profile \succ in which every voter ranks some $b \in O$ at either the very bottom or very top, and assume for contradiction that the above claim is not true. Then, there must exist some pair of distinct outcomes $a, c \in O$ for which $a \succ_{W} b$ and $b \succ_{W} c$.

Step 1

> If every voter puts an outcome b at either the very top or the very bottom of his preference list, b must be at either the very top or very bottom of \succ_{W} as well.

Now let's modify \succ so that every voter moves c just above a in his preference ranking, and otherwise leaves the ranking unchanged; let's call this new preference ordering \succ^{\prime}. We know from IIA that for $a \succ_{W} b$ or $b \succ_{W} c$ to change, the pairwise relationship between a and b and/or the pairwise relationship between b and c would have to change. However, since b occupies an extremal position for all voters, c can be moved above a without changing either of these pairwise relationships. Thus in profile \succ^{\prime} it is also the case that $a \succ_{W} b$ and $b \succ_{W} c$. From this fact and from transitivity, we have that $a \succ_{W} c$. However, in \succ^{\prime} every voter ranks c above a and so PE requires that $c \succ_{W} a$. We have a contradiction.

