
Compact game representations in graph for
computing Nash equilibria

Lin Xu
xulin730@cs.ubc.ca

Shuang Hao
haos05@cs.ubc.ca

Department of Computer Science, University of British Columbia,
Vancouver, B.C. V6T 1Z4

December 10, 2005

Abstract

Nash equilibrium is one of the most important concepts in game theory. A lot
of research efforts are invested into finding Nash equilibria of games. Unfortu-
nately, all existing methods for finding Nash equilibria of arbitrary games require
exponential runtime. This makes the application of Nash equilibria impractical.
Real world games often have topological independencies. An agent’s payoff does
not always rely on all other agents’ actions; most likely it only depends on a small
group of agents’ actions. In this paper, we introduce two well-known types of com-
pact game representations: agent graph game and action graph game. The recently
proposed state of the art method, the continuation method, is applied to these two
types of compact games. Computing the Jacobian of the pay-off function is the
bottleneck step of finding Nash equilibria. Theoretical analysis shows exponential
savings can be achieved by exploiting the structure of compact game representa-
tion. Furthermore, we show that for an important sub-class of action graph game,
symmetric game, the jacobian can be computed in polynomial time.

Keywords: Nash equilibria, Continuation method, Graphical games, Action-
graph games

1 Introduction

Nash equilibrium is one of the central conceptions in Game Theory. In ann-player
game, given a strategy profiles = (s1, . . . , sn), we defines−i = (s1, . . . , si−1, si+1, . . . , sn),
then(si, s−i) = s [1]. Playeri’s best response to the strategy profiles−i is defined
as the strategys∗i ∈ Si such that its utilityui(s∗i , s−i) ≥ ui(si, s−i) for all strategies
si ∈ Si. A Nash equilibrium is a strategy profiles = (s1, . . . , sn), if for all agentsi,
si is its best response tos−i. For approximate Nash equilibria, we relax the restriction
of the best response toui(s′i, s−i) + ε ≥ ui(si, s−i), wheresi′ is theε-best response
to s−i. An ε-Nash equilibrium is a strategy profile such that any player’s strategy is its

ε-best response to other players’ strategies. Thus, no player can improve their expected
payoff by more thanε by deviating from an approximate Nash equilibrium [2].

Nash’s theorem reveals thatevery finite normal form game has a Nash equilibrium.
A natural problem then is how to find out all(or some) Nash equilibria for a certain
game. The two-player, two-action game is easy, as we can represent the utilities of
agents in a tabular form and explore the strategy space by enumeration. But for the
general case, the strategy space is exponential in the number of agents in the game,
making the problem intractable. It is still not clear whether finding a Nash equilibrium
belongs toP. The best known algorithm so far to compute Nash equilibria is the
continuation method due to Govindan and Wilson [6]. Their method guarantees to
find at least one equilibrium of a game. However, in practice this algorithm’s runtime
is dominated by the computation of the Jacobian of the payoff function, required for
computing the gradient, which is both best- and worst-case exponential in the number
of agents.

In standard game representations, both the normal (matrix) form and the extensive
(game tree) form obscure certain important structure that is often present in real-world
scenarios. Compact models are required to make such structures explicit. Hence, we
can utilize the utility independencies to reduce the strategy space, and alleviate the
computation cost for finding Nash equilibria. Graphical models are widely used to
compactly represent a game because they efficiently encode context-specific and strict
utility independencies. Such typical models include graphical games, multi-agent in-
fluence diagrams, action-graph games etc.

The rest of the paper is organized as follows. We first introduce two kinds of graph
representations for games in section 2. In section 3, we mainly illustrate the mecha-
nism of the continuation method. Section 4 demonstrates how to apply the continuation
method to compact games. Finally we draw conclusions in section 5 with some discus-
sions.

2 Graphical models to represent a game

We explore two classes of graphical models for compactly representing games. The
first one, agent-graph game, exploits strict independencies between players’ utility
functions. The second one, action-graph game, not only depicts strict independencies
but also expresses context-specific independencies between players’ utility functions.

2.1 Agent-graph games

An n-player graphical game is a pair(G, u) [2], whereG is an undirected graph on
n vertices andu is a set ofn matricesui. ui(a) specifies the utility to playeri when
the joint action of then players isa. An edge(i, j) in G represents the fact thati’s
utility is dependent onj’s action/decision, or vice versa. A mixed strategy for playeri
is si ∈ π(ai), a distribution overi’s possible actions. We useNG(i) ⊆ {1, . . . , n} to
denote the set of neighbors of playeri in G. Thenui is a |NG(i)|-dimention matrix,
where each index indicates one of its neighbors, including itself. The expected utility

for playeri given a strategy profiles is shown below:

Vi(s) =
∑

a′∈ aNG(i)

ui(a′)
∏

j∈NG(i)

sj(a′j) (1)

whereaNG(i) is the action set fori’s neighbors. That reflects the strict utility inde-
pendence held between pairs of players. The best response for playeri to the strategy
profile s−i is a mixed strategys∗i , such that∀si ∈ si, ui(s∗i , s−i) ≥ ui(si, s−i). In a
Nash equilibrium, the strategy for every playeri is its best response to other players’
strategy profile. We give a simple example in Figure 1. Playera’s utility only depends
on the chosen actions ofa, b, c, g, f , which are in the neighborhood ofa.

b

a

f

c

g

d

e

Figure 1: A simple example of graphical game

This definition alters nothing about the underlying game theory. Thus, every graph-
ical game has a Nash equilibrium. Note thatNG(i) << n makes the description of
the game exponential in the degree of the graph but not in the total number of agents ,
which will significantly reduce the computation cost of finding Nash equilibria.

Such a graphical model may naturally and succinctly capture the underlying game
structure in many common settings. A graph topology might model the physical dis-
tribution and interactions of agents: each salesperson is viewed as being involved in a
local competition (game) with the salespeople in geographically neighboring regions.
The graph may be used to represent organizational structure: low-level employees are
engaged in a game with their immediate supervisors, who in turn are engaged in the
game involving their direct reports and their own managers, and so on up to the CEO. A
graph may coincide with the topology of a computer network, in which each machine
negotiates with its neighbors (to balance load, for instance).

2.2 Action-graph games

A novel graphical model, action-graph game [3], is proposed to depict detailed compact
information, where the vertices represent actions rather than agents. An action-graph
game (AGG) is a tuple(N, S, S, v, u), whereN is the set ofn agents;S =

∏
i∈N Si is

the set of pure action profiles;S =
⋃

i∈N Si is the set of distinct actions. The neighbor
relationv is a functionv : S → 2S ; Utility function u : S ×∆ → R, where∆ denotes
the set of possible distributions of agents’ numbers over distinct actions. Note that all
agents have the same utility function.

i2

i3
i1

k2

k3

k1

j2

j1

j3

Figure 2: 3-player, 3-action game in AGG

V1

C1

V3

C3 C4

V4V2

C2

Figure 3: ice cream vendor game in AGG

Let G be the action graph: a directed graph having one node for every actions ∈ S.
There is an edge froms′ to s in G if and only if s′ ∈ v(s). The utility function has the
property that given any actions and any pair of distributionD andD′ ∈ ∆,

[∀s′ ∈ v(s), D(s′) = D′(s′)] =⇒ u(s,D) = u(s,D′) (2)

That means playeri’s utility depends only on the numbers of agents who take neigh-
boring actions. So AGG is able to express context-specific independencies in utility
function and strict utility independence.

It is illustrated in [3] that graphical games can be converted to AGGs. Figure 2
demonstrates that any game can be expressed as an AGG, where nodes represent ac-
tions; directed edges represent membership in a node’s neighborhood; the dotted boxes
represent the players’ action sets: player 1 has actions 1, 2 and 3.

In Figure 3, AGGs are able to represent context-specific independence. Consider
the setting in whichn ice cream vendors must choose one of four locations along a
beach. Vendors sell either chocolate or vanilla ice cream, but not both. Chocolate
(vanilla) vendors are negatively affected by the presence of other chocolate (vanilla)
vendors in the same or neighboring locations, and are simultaneously positively af-
fected by the presence of nearby vanilla (chocolate) vendors. Note that this game
exhibits context-specific independence without any strict independence, and that the
graph structure is independent ofn.

Σi = π(Si) is the set of mixed strategies fori. Σ =
∏

i∈N Σi is the strategy space
for the game. We denote an element ofΣi by σi and an element ofΣ by σ. Define the
expected utility to agenti for playing pure strategys, given that all other agents play
the mixed strategy profileσ−i,

V i
s (σ−i) =

∑

s−i∈S−i

u(s, s−i)Pr(s−i | σ−i) (3)

The set ofi’s pure strategy best responses to a mixed strategy profileσ−i isarg maxs V i
s (σ−i),

so the full set ofi’s pure and mixed strategy best responses toσ−i is

BRi(σ−i) ≡ π(arg max
s

V i
s (σ−i)) (4)

A Nash equilibrium is the strategy profileσ, where∀ i ∈ N, σi ∈ BRi(σ−i). Note
that the definition for best responses is slightly different with the formal definition [1],
but such adaption will not affect the Nash equilibrium.

Here, we introduce the processprojection, which will be used later. For every
action s ∈ S define a reduced graphG(s) by including only the nodesv(s) and a
virtual nodeφ. The only edges included inG(s) are the directed edges related tos and
s′ ∈ v(s). The distributionD(s) is defined below.

D(s)(s′) =

{
D(s′)∑

s′′ /∈v(s) D(s′′)
s′ ∈ v(s)
s′ = φ

(5)

By the projection, we map the action nodes that are not ini’s neighborhood into a
single actionφ.

3 Approaches to compute Nash equilibria

3.1 Related works

Early algorithms for computing Nash equilibria in graphical games have constraints
on the graph’s topology. For example, the abstract tree algorithm [2] requires the un-
derlying graph to be a tree. Several other algorithms have been proposed for only
computing theε-equilibria in graphical games, such as variable elimination [4]. Un-
fortunately, finding anε-equilibrium is not necessarily a step toward finding an exact
equilibrium: the fact thatσ is anε-equilibrium does not guarantee the existence of an
exact equilibrium in the neighborhood ofσ [5]. As stated above, it is not clear whether
computing a Nash equilibrium belongs toP, so many researchers devote their efforts
to finding more efficient algorithms to solve this problem.

One state of the art general-purpose algorithm is the continuation method by Govin-
dan and Wilson [6], a gradient-following algorithm which is based on topological in-
sight into the graph of the Nash equilibrium. Although this algorithm impressively
outperforms other algorithms, it is only practical when there are only small number of
players and possible actions.

3.2 The continuation method

The continuation method works by solving a simpler perturbed problem and then trac-
ing the solution as the magnitude of the perturbation decreases, converging to a solution
to the original problem. Whenλ = 1, the perturbed problem’s solution is known or
easy to compute. Whenλ = 0, the perturbed problem is the original problem. The
easily solvable problem can be ”continuously deformed” into the target problem. Let
vectorω represents the real values of the solution. With different values ofλ, we obtain
different perturbed problems. For every perturbed problem, we characterize solutions
by the equationF (ω, λ) = 0, whereF is a real value vector function. We define this
function as follows: IfF (ω, λ) = 0 holds,ω is a solution to the problem perturbed by
λ. The continuation method traces solutions along the manifold of solution pair(ω, λ)
of that functionF (ω, λ) = 0. If we have a solution pair(ω, λ), our goal is to trace that

solution to adjacent solutions. This requires the effects caused byλ andσ must cancel
out so thatF remains equal to0. As we decreaseλ by dλ, the effect to the function
F (ω, λ) must be cancel out by changingω by dω, which is equivalent to

[∇ωF ∇λF]
[
dω

dλ

]
= 0 (6)

If the matrix [∇ωF ∇λF] has null-space of rank1 everywhere, the curve is
uniquely defined. If we construct functionF carefully, we can guarantee the curve
starting withλ = 1 will across toλ = 0, thus finding the solution of the original prob-
lem. The null-space of the Jacobian∇F at current solution(ω, λ) indicates a direction,
along which the solution is moved step by step. Beginning withλ = 1, the continua-
tion method can follow this path untilλ reaches0. The cost of each step is cubic in the
size of the Jacobian.

The continuation method can be applied to the task of finding Nash equilibria in
games. We perturb the game by addingλ times a fixed bonusb to each agent’s pay-
off, such that the bonus for an agent only depends on its own action. If the bonus
given to agenti for playing actionsi is sufficiently large, while the bonus for agent
i’s other actions are zero. Then the dominant strategy for each agent will be to play
the action with the largest bonus. The corresponding strategy profile will form a Nash
equilibrium, which is the only pure strategy Nash equilibrium for the perturbed game
with λ = 1. By the continuation method we can follow a path in the space ofλ and
equilibrium profiles for the resulting perturbed game. Whenλ decreases to0, the cor-
responding strategy profile is a Nash equilibrium of the original game.

To apply the continuation method to find Nash equilibra of a game, we need to
construct the functionF , which has solution pair(ω, λ), whereω is the equilibrium
of the perturbed game controlled by parameterλ. We define a retraction functionR :
Rm → Σ to be an operator taking a vector of dimensionm and mapping it to the
nearest point in the space ofΣ of mixed strategies in Euclidean distance. This mapping
corresponds to increasing the probabilities of playing strategies that have better payoffs
and decreasing the probabilities of playing strategies that have worse payoffs. A Nash
equilibrium is recovered fromσ+V (σ) by the retraction operatorR : R(σ+V (σ)) =
σ, where no further (local) improvement can be achieved for any agent. Recall thatV is
the vector derived form Equation (3), which is the expected utility to agenti for playing
pure strategys, given that all other agents play the mixed strategy profileσ−i. If σ =
R(ω) andω = σ +V (σ) we have the equivalent condition thatω = R(ω)+V (R(ω)).
This allows us to search for a pointω ∈ Rm which satisfies this equality, in which case
R(ω) is guaranteed to be an equilibrium.

In the perturbed game, we replaceV with V + λb, whereb is a unique bonus that
agents receive for playing certain actions no matter what all other agents do. Ifb is large
enough, the resulting perturbed game has a unique pure strategy Nash equilibrium, in
which each agent plays the pure strategy s for whichbs is maximal. Our continuation
equation has the form:

F (ω, λ) = ω −R(ω)− (V (R(ω)) + λb) (7)

F (ω, λ) = 0 if and only if R(ω) is an equilibrium of the induced game with bonus

λb. Whenλ = 1, the solution of the perturbed game is the Nash equilibrium described
above. When we decreaseλ to 0, the perturbed game will be the same as the original
game. HenceF (ω, 0) = 0, if and only if R(ω) is a Nash equilibrium of the original
game.

In order to solve Equation (6), we need to compute∇ωF . From Equation (7), we
obtain

∇ωF = I − (I +∇V)∇R (8)

The computation cost of computing the Jacobian ofF is dominated by the Jacobian
of V . For pure strategysi of agenti andsi′ of agenti′, the value of Jacobian at location
(si, si′) equals to the expected payoff of agenti when it plays the pure strategysi, and
agenti′ plays the pure strategysi′ and all other agents play according to the strategy
profileσ.

∇V i,i′
si,si′

=
∑

s̄∈S̄

u(si, si′ , s̄)Pr(s̄ | σ̄) wherePr(s̄ | σ̄) =
∏

j∈N̄

σ̄j(s̄j) (9)

We denotēσ ≡ σ−{i,i′} as the strategy profile for agents other thani andi′. In the
rest part of the paper, we will use this kind of notation in similar cases.

The computing cost of this Jacobian (multiplications and summations in Equation
(9)) is exponential in the number of agents.

4 Applying continuation method to structured games

In order to minimize the computation cost of finding the Nash equilibria of a game
using the continuation method, we have to reduce the cost of computing the Jacobian of
∇V , which requires exponential time in the number of agents. In this section, we show
that using compact representation of games can significantly reduce the computation
cost of computing the Jacobian by exploiting topological structure.

4.1 Computing the Jacobian in agent-graph games

In graphical games, agenti’s payoff only depends on agenti’s action and its neighbors’
actions. This observation allows us to achieve an exponential saving on the computa-
tion cost of the Jacobian.

When agenti′ is not in the neighborhood of agenti, the equation ignores the action
of i′. The computation is exponential only in the neighborhood size of agenti. We
also observe the result of the equation has nothing to do with agenti′ and its actions.
Hence, we can use this value for all agents not in the neighborhood ofi.

∇V i,i′
si,si′

=
∑

s−i∈S−i

u(si, s−i)Pr(s−i | σ−i) (10)

wherePr(s−i | σ−i) =
∏

j∈NG(i)−{i}
σj
−i(s

j
−i)

Recall thatS−i is a vector of actions only ofNG(i) − {i}, we see that this com-
putation is only in the neighborhood size ofi. Sincei′ never explicitly appears in the
above equation,∇V i,i′

si,si′
remains the same for anyi′ /∈ NG(i).

In the case ofi′ ∈ NG(i), Jacobian has the form

∇V i,i′
si,si′

=
∑

s̄∈S̄

u(si, si′ , s̄)Pr(s̄ | σ̄) wherePr(s̄ | σ̄) =
∏

j∈NG(i)−{i,i′}
σ̄j(s̄j)

(11)
Define D = max{NG(i), ∀i}, α as the maximal number of actions per agent.

Then the computation of the Jacobian requiresO(|N |DαD + |N |2) time. Notice that
in many real settings of games,D ¿ N . We can reduce the computation cost by an
exponential factorα(N−D).

4.2 Computing the Jacobian in action-graph games

Similar to agent graph games, the computation of the Jacobian ofV is the bottleneck
of finding Nash equilibria of action-graph games. Recall the equation for computing
the Jacobian of V in the general case, we show the equation of computing the Jacobian
of V below for action graph game case.

∇V i,i′
si,si′

=
∑

s̄(si)∈S̄(si)

u(si, D(si, s
(si)
i′ , s̄(si)))Pr(s̄(si) | σ̄(si)) (12)

wherePr(s̄(si) | σ̄(si)) =
∏

j∈N̄

σ̄
(si)
j (s̄(si)

j)

Recall that the superscript in the equation denotes the projection of actioni, which
constructs a reduced graph by including only the nodesv(si) and a new nodeφ. We
define the maximum indegree of the graphG asI, so the maximum indegree in the
projected graphG(s) is I + 1.

Because of the property represented in Equation (2), we treats̄ ands̄′ as equivalent
if and only if D(s̄) = D(s̄′). We only need to consider the projected distributionD̄(si)

rather than the projected pure action profiles̄(si), obtaining

∇V i,i′
si,si′

=
∑

D̄(si)∈∆̄(si)

u(si, D(si, s
(si)
i′ , D̄(si)))Pr(D̄(si) | σ̄(si)) (13)

wherePr(D̄(si) | σ̄(si)) =
∑

s̄(si)∈S(D̄(si))

Pr(s̄(si) | σ̄(si))

Theorem 1 Computation of the Jacobian for arbitrary action-graph games using Equa-
tion (13) takes time that isO((I + 1)|N̄ |poly(|N̄ |)poly(|S|)).

Moreover, for a graphical game encoded as an AGG, by projecting the action graph,
we obtain the same exponential speed up as in the graphical game case, which was
illustrated in section 4.1.

In the symmetric case of action graph games, all agents have the same action
choices:∀ i,∀ j, Si = Sj = S. Nash proved that all finite symmetric games have
at least one symmetric equilibrium. In this equilibrium, every agent uses the same
mixed strategy. It is easy to show that finding the symmetric equilibrium is much eas-
ier than finding an arbitrary equilibrium. We add the same bonus to form a perturbed
game. The initial equilibrium of the perturbed game is that all agents take the same
action. In every step of continuation method, we always get a symmetric equilibrium
as decreasingλ.

Since all agents have the same strategies, each pure action profile is equally likely.
Hence for anȳs ∈ S(D̄(si))

Pr(D̄(si) | σ(si)∗) = |S(D̄(si))|Pr(s̄(si) | σ̄(si)∗) (14)

wherePr(s̄(si) | σ̄(si)∗) =
∏

a∈S̄(si)

(σ̄(si)
j (a))D̄(si)(a)

Note that size|S(D̄(si))| is the multinomial coefficient. The largest value of this
size is reached when agents are evenly distributed across the nodes of the projected
graph.

The computation of the Jacobin is much easier because we do not need to consider
individual agent identities inV . We can use∇V∗ si,si′ to replace∇V i,i′

si,si′
for any

i 6= i′. The Jacobian has the following form for symmetric case:

∇V∗ si,si′ (σ∗) =
∑

D̄(si)∈∆̄(si)

u(si, D(si, s
(si)
i′ , D̄(si)))Pr(D̄(si) | σ̄(si)∗) (15)

WherePr(D̄(si) | σ̄(si)∗) is defined in Equation (14).

Theorem 2 Computation of the Jacobian for symmetric action-graph games using
Equation (15) takes time that isO(poly(|N̄ |I)poly(|S|)).

If readers are interested in the proofs about Theorem 1, 2, please refer the details in
[3].

5 Conclusion

Since Nash proved that for every finite normal form game there exists at lease one Nash
equilibrium, finding Nash equilibria became an active area of research. Even with the
best known algorithm, computing a Nash equilibrium is exponential in computation. In
the last few years, researchers have turned their focus to compact games. For graphical
games, the exact algorithms are proposed but can only be applied to an undirected tree
with every agent having only two actions. There are several algorithms introduced for
computingε-Nash equilibria. Their running time either is bounded on the tree-width of
the graph or has no bounds at all. Blum [5] shows that findingε-Nash equilibrium is not

necessarily a step toward finding an exact equilibrium. In fact,σ being anε-Nash equi-
librium does not guarantee the existence of an exact equilibrium in the neighborhood
of σ.

In this paper, we introduced two types of most important compact game represen-
tations, agent graph game and action graph game. Those two game models explore the
topological relationship between nodes in the game graph in different respect. Agent
graph game considers each agent as a node in the game graph and presents the depen-
dency of payoff between agents by edges. If there exists payoff dependency between
agenti andj, then there exists an edge betweeni andj. For action graph games, ac-
tions are represented as nodes in the game graph, and the edges between two nodes
represent the payoff dependency of the corresponding actions of agents. AGG can be
used to encode both strict and context-specific independence.

The continuation method is the most recent advanced method to compute Nash
equilibria. The bottleneck of computing equilibria using the continuation method is
computing the Jacobian of the payoff function. We show that exponential savings can
be achieved by applying the continuation method to compact games. In the graphic
game case, the computation cost of the Jacobian is only exponential in the graphical
game’s maximal number of node’s degree instead of total number of nodes. Note that
in most cases, the maximal degree of nodes are much less than the total number of
nodes in the graph. For the action graph, we show that computation of the Jacobian
grows exponentially with the action graph’s maximum degree of the nodes rather than
with its total number of nodes for an arbitrary case. In an important case of AGG,
symmetric game, the Jacobian can be computed in polynomial time when the action’s
maximal in-degree is constant.

References

[1] Shoham, Y., & Leyton-Brown, K. (2005). Multi Agent Systems (draft book).

[2] Kearns, M., Littman, M., & Singh, S. (2001). Graphical models for game theory.
UAI.

[3] Bhat, N., & Leyton-Brown, K. (2004). Computing Nash equilibria of action-graph
games.UAI.

[4] Vickrey, D., & Koller, D. (2002). Multi-agent algorithms for solving graphical
games.AAAI.

[5] Blum, B., Shelton, C., & Koller, D. (2003). A continuation method for Nash equi-
libria in structured games.IJCAI.

[6] Govindan, S., & Wilson, R. (2003). A global Newton method to compute Nash
equilibria.J. Economic Theory, 110, 65-86.

