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1 Introduction

Efficiency in networks with lots of traffic is a serious problem in many different fields. Road traffic
for example had been studied for several decades. In computer networks like the Internet this
problem has also become much more important over the past few years because of the growing
amount of data. No matter what kind of networks you study, they share many properties if you
abstract the model. All networks have nodes, edges and traffic had to be routed through the
network as efficiently as possible. So you can transfer many results from other, where network
problems had been studied to computer networks.
Network efficiency is hard to describe. Network users usually want to route their traffic at lowest
cost. Costs might be waiting time or taxes for using edges. From a central point of view you have
two ways of looking at efficiency. You can route traffic in that manner that the sum of costs from
each edge is minimal. Or you might want the maximum cost of a user to be as low as possible. For
example you have to route two files at the same time through the network. You have the possibility
that both files need 30 seconds or one needs 10 seconds and the other one needs 40 seconds. In the
first time you need more resources because the sum is higher but you are done 10 seconds faster.
This paper deals with the problem of efficient routing in networks with selfish routers without
regulation. I want to analyze if the outcome of network with a central regulation is worse than
one without. This work will show that there exists a trade off between that both possibilities.
Furthermore, I will present possibilities to achieve the optimal outcome with the help of taxation
and how powerful they are. After that I will discuss the inequity some users may experience if
network designers try to achieve a optimal outcome.

2 Model

First of all we have to introduce some Variables which describe our network. Our network is a graph
(V,E) which consists of nodes and edges. Traffic should be carried from one node to another. This
traffic is our flow f . Every flow has a source s and a target t. There are networks which have only
one unique source and one unique target whereas in some networks every node can be target or
source, or both. The results presented in this paper consider the general case, but some examples
use the simple case to provide a better illustration.
In the Introduction we said that we want users to minimize costs while using the network. Costs
can be expressed in terms of latency. Every edge e of a network has its own latency le(fe) which is
an increasing function of the flow of this edge. Consequently the latency of a Path P is

• lp(f) =
∑

e∈E le(fe).
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As the cost of all flows or total latency we define as:

• C(f) =
∑

P∈P lP (f)fP =
∑

e∈E le(fe)fe

A Wardrop Model is a network model that judges an outcome by the total latency or the average
latency per user. Both approaches are equivalent. In contrast to that a KP-Model1 looks at the
maximum latency of a network user.
Minimizing the total latency means minimizing social costs:

• MinC(f) = Min(
∑

e∈E le(fe)fe) = Min(
∑

e∈E ce(fe))

A flow which minimizes social costs is called optimal flow. A Nash equilibrium is a set of strategies
of each player such as that no player has incentive to unilaterally change his action like in the
famous ”Prisoner’s Dilemma”. 2Nash equilibria do not necessarily minimize social costs. A flow is
in Nash equilibrium if no agent can improve its latency by changing its path. We will call that flow
a Nash flow.

3 Price of Anarchy

In a network with a lack of a central regulation users are non-cooperative. That means that they
act selfishly. The user’s aim is to route their traffic at lowest cost through the network. However
the shortest path is not always to best one. Imagine you have two mirrors where you can download
a file. One has a total bit rate of 10 Mbit/s the other one 1 Mbit/s. When 20 internet users want
to download the same file, all of them should choose the first mirror. But each user will have an
average download rate of 0,5 Mbit/s. So one user would have incentive to use the second mirror if
he was the only one.
Brass’ Paradoxon3 becomes very popular in the network theory, because it proves that there are
networks with selfish routers where a removal of edge can improve the efficiency of an outcome.
The first article about that topic was already published in 1968 while analyzing road traffic. Let’s
consider figure 1. To keep it simple we have a network with one starting point and one target. The
edge latencies are given in the graph. There are 3 paths to route your traffic from S to T (PSAT ,
PSABT and PSBT ). The latencies for each way are:

1see [13] to learn all different aspect of the Wardrop and KP Model.
2see [10],p.80f
3see [8]
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• lSAT = 140 + 2 ∗ fSA + fAT

• lSBT = 140 + 2 ∗ fBT + fSB

• lSABT = 2 ∗ fSA + fBT

F is the flow which has to be routed through the network. Let’s assume that each user wants to
route exactly a flow of f = 1. If we had 20 users it is obvious that each of them will use PSABT ,
since the total latency is 80 and not as big as the constant latency factor of the other ways. Now
suppose we have 100 users which want to route their traffic through the network. All traffic has
to be routed from S to T. So we have a total flow f = 100. If we had a central regulation and not
selfish routers, this regulation would determine that 50 users will use PSAT and 50 users PSBT , so
that all of them experience a latency of exactly 290. Note that the latency of the way PSABT is 200
at the moment that nobody uses it. But when we have selfish routers this chosen flow is an optimal
flow, but not a Nash flow. A actor which uses PSAT could minimize his own latency by deviating to
PSABT . He would have a latency of 202 whereas a PSAT user has now a latency of 289, but PSBT ’s
latency increase to 292. Of course a PSBT user has the same incentive to use PSABT , increasing
PSABT ’s latency to 204, decreasing PSBT ’s latency to 291 and increasing PSAT ’s latency to 291.
We see that when one actor using PSAT and one actor using PSBT defect by deviating toward
PSABT , lSAT and lSBT increases 1 units, but lSABT increases 4 units so that after 60 routers had
defected we can find a Nash equilibrium. 20 users are using PSAT , 20 user’s PSBT and 60 users
PSABT and all of them had a latency of 320. Now no user has incentive to deviate because he would
increase the latency of the way to which he deviates. So the outcome is much worse compared to
the outcome made by a central regulation to everyone. However, if we removed edge AB from our
graph, the way PSABT would become impossible and nobody could deviate towards PSABT . The
optimal flow would become a Nash flow. So we see that removing the most useful edge(because it
has a constant latency of 0), makes our network more efficient.

Braess’ Paradoxon stated that in a network an optimal flow is not necessarily a Nash flow.
However, we can try to find a upper bound for the worst flow. Therefore, there exists a Coordination
ratio, which is well known as ”the price of anarchy”’ in selfish networks. It is defined: ρ = C(f)

C(f∗) .
Roughgarden and Tardes4 showed that the coordination ration in the worst-case Nash equilibrium
is not more than 4/3 under the assumption of having linear latency functions. Furthermore they
showed that for increasing latency functions, which are polynomials with degree p higher than 2,
the worst coordination ratio for the worst case Nash equilibrium is θ( p

logp)

4 Edge Taxation

In the previous section we talked about the efficiency of Nash equilibria. We stated that there
exists at least one pure strategy Nash equilibrium in networks with selfish users. Since it is not
necessarily unique, there might be more than one Nash equilibrium and we described the worst-case
Nash equilibrium and introduced the coordination ratio.
However there exists a discussion in the recent research work on how to design networks to make
Nash equilibria more efficient or in the best case how optimal flows will become unique Nash flows.
We will discuss three possibilities5, how you might influence optimal flow and Nash flow: edge
removal, arbitrary taxation and marginal cost taxation.

4see [7]
5all claims in that paragraph are based on[7]
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The first approach we have already described in the last section. Brass’ Paradoxon showed that edge
removal can achieve a Nash equilibrium which optimizes social costs. So as a network designer you
act as a central regulation under game theoretical aspects. You have to recognize inefficient Nash
equilibria and remove edges in that way that you cannot constitute these equilibria anymore. You
try to achieve through edge removal that the optimal flow will become a Nash flow. In our example
of the Braess Paradoxon it would mean to remove edge (A,B). However, not every network allows
you to achieve the social optimum. Especially in large networks with non-linear latency-functions
the computation of eliminating all ”bad” Nash flows can be achieved only in exponential time.
Sometimes after edge removal the social optimum is still not a Nash equilibrium and sometimes it
is, but the social costs of that optimal flow are higher than before edge removal. A further problem
might be that removing edges means destroying infrastructure, especially in cases where you use
the same network in different manners. For example you have different flows or different source
and target nodes over time, you will have different optimal flows using different edges.
Cole, Dodis and Roughgarden also analyzed an equivalent method: arbitrary taxes. That means
that users pay for using edges to route their traffic and the price is calculated independently of
the latency and the delay which a user causes to the others by using the network. In our Braess’
Paradoxon example we would set the tax for (A,B) very high, say 2000 units, and no tax for the
other edges so that nobody has the incentive to use Path PSABT anymore. We would have the
same effect like removing those edge from the network and everybody would head to the social
optimum outcome which is a Nash flow after introducing that tax. However, Cole, Dodis and
Roughgarden proved that removing that arbitrary taxes cannot improve efficiency better than edge
removal under the assumption having linear latency functions. But under the assumption of having
polynomial latency function with degree greater than 2 this equivalence statement does not hold,
because the improvement might be better than edge removal. The proof can also be seen in[7]. In
contrast to edge removal, taxation seems to be better to handle in practice, because you can change
the amount of taxes which users have to pay for an edge very quickly.
Another proposed way to achieve a better flow in Nash equilibrium might be marginal cost taxation,
meaning that a tax for using an edge of a network is higher, when the user causes a higher delay
to other users. Let’s consider figure 2 which is more simple a Braess’Paradoxon example. We want
to compute optimal marginal taxes. The optimal flow is fSAT = 50 and fSAT = 50 whereas the
Nash flow is fSABT = 100. By using edge (S, A) a user causes 1 unit more harm to the others than
when he uses (S, B). The same applies to (B, T ) compared to (A, T ). So we have to add a tax t
to (S, A) and (B, T ) of t = 1 ∗ f . Then the optimal flow is a Nash flow, but the prevoius Nash
equilibrium is still a Nash equilibrium.

But compared to the old optimal flow the costs has changed. The costs are now 200 and so we
can say that Sopt,new = 4

3Sopt,old so that the social optimum is worse than before. So we did not
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improved costs of our Nash flow and achieved no improvement in efficiency. We have just damaged
the optimal flow. Efficiency could only be achieved when taxes would be refunded, for example by
paying the same amount to each user.6 One thing that the authors did not consider in their models
is tax sensitivity. Each user reacts different to taxes, because comparing time delay to money, it
might have a different value to him. Consider for example prices for flight ticket. You can choose
between a direct flight or a flight with 2 stops which is 20 percent cheaper. For a business man
saving time is more important than spending a little bit more money so he will probably choose
a direct flight, whereas a student might decide to buy the cheaper flight. This sensitivity had not
been considered when looking at taxation in networks. 7

5 Fairness of optimal flows

We used the Wardrop model for routing in networks so for as it is the most common one to
use, because it considers average total latency. We tried to find a way to to make Nash flows
better. However, heading to the social optimum burdens a problem which is hardly discussed
in the literature so far: equality. There might be users in a social optimum which might be
penalized harshly. Let’s consider following example. You will recognize that figure 3 is also a
Braess’ Paradoxon example, but we did again some modifications. Say again we have 100 users
where each of them wants to route a flow f=1 from s to t, so that the total flow is 100 so far.
However we have an additional user, user U101. This user is highly sensitive to latency. Since he
does not want to be dependent to others and their decisions on how to use the network he invests
much into a new edge to connect to the network. U101 is able to have a different source S∗ from
which he can reach T much faster. U101 supposes that network users act selfishly, and that nobody
wants to introduce taxation or edge removal. Since he is rational and thinks that the others are
supposed to be rational as well, he knows that all the other users will constitute the same Nash
flow like in section 3. This means that 60 users will use PSABT , 20 users PSACT and another 20
users PSBT . Note that the existence of U101 does not change anything. For the PSACT users he
causes increase the latency of one unit, but they cannot improve by deviating. However, this Nash
flow is not unique anymore, because exactly one PSACT can switch to either PSABT or PSBT .
What happened now when we try to achieve optimal social costs by techniques proposed in section
4? Among the 100 remaining users, 50 will use PSACT and the other 50 PSBT . These users will

6see[7], p.4
7Karakostas and Kolliopoilos[12] considered that problem in their research work. Their results are not reviewed

in that paper.
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have a latency of 290 compared to 320 before. But U101 will have 300 instead of 270. He is now
worse off using his own way than sharing the edges with the others. He is really penalized by
the virtual central regulation in form of the network designers which want to improve Nash flows
through taxes or edge removal. The main reason why the example in section 3 does not always
work (truly said, it will work in a very few cases) is that the Nash flow was pareto dominated by
the optimal flow. The same phenomena was detected in the prisoner’s dilemma, where the outcome
constituted by the only Nash equilibrium was the only outcome which was not pareto efficient. In
that example the nash flow is not pareto dominated because we saw that U101 is now worse off.

6 Summary

This paper reflects many current research results about routing in networks with selfish users. It
presents that optimal flows in networks are not necessarily Nash flows and that in the case of Braess’
Paradoxon a Nash flow might even be pareto dominated by a optimal flow. It also presents possible
solutions to network designers to make Nash flows more efficient, like edge removal or taxation. In
theory, there might be a way out of the dilemma, but we saw that there are barrier like complexity
and heterogeneous users that network designers have to consider. At the end the paper showed
that this sort of central regulation can discriminate some users while trying to achieve the optimal
flow. We saw that coping with networks is very hard and we could not find a solution which is
satisfactory to every aspect network designers have to consider.
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