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Abstract

Game theory makes the assumption that each agent in a game is ratio-
nal: the agents are expected utility maximizers. This paper explores the
use of finite automata to model agents and the restriction of the allowable
automata as a way of bounding the rationality of the agents. We analyze
several major results for their effectiveness at explaining the experimental
results that are inconsistent with theoretical predictions.

1 Introduction

Game theory makes the assumption that each agent in a game is rational: the
agents are expected utility maximizers. This assumption leads to rationality
constructs such as “backward induction,” where a rational agent will compute
his/her strategy in an extended form game by starting at the leaves of the game
tree and working upward. However, backward induction often predicts results
which are entirely different than results obtained empirically. This divergence is
most often noted in the “Finitely Repeated Prisoners’ Dilemma,” where theoret-
ical results predict that each agent will defect in every round and experimental
results show extended periods of cooperation[1, 2].

Bounded rationality has emerged as a major paradigm for explaining why
theoretical and experimental results do not always line up in game theory. We
still make the assumption that each agent is an expected utility maximizer, but
we attempt to restrict the agents’ computational ability so that they may not
be able to compute the “most rational” outcome.

This paper looks at modeling agents’ actions using finite automata. We then
evaluate four ways of restricting the allowable automata as a means of placing
bounds on the agents’ rationality: imposing a maintenance cost, considering
an alternate solution concept, directly limiting the complexity of the automata,
and limiting the time agents are allowed to compute their automata.
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Figure 1: Standard Prisoners’ Dilemma Payoff

2 Bounded Rationality with Finite Automata

The use of finite automata (FA) has emerged as the most studied model for
representing bounded rationality in agents. In this model, each agent’s pure
strategy space is the space of modified FA called Moore machines. A Moore
machine is a FA that labels each state with an output. This output corresponds
to the action that that agent plays at his/her next choice node. The transition
function maps the current state together with the current information set to the
next state in the machine. For iterated stage games, such as iterated prisoners’
dilemma, we can simplify the transition function to be a map from the current
state and the opposing player’s action to the next state.

More formally, in the iterated game G = (N,A, u), agent i’s strategy is:

• A set of states, Qi.

• An initial state, q0
i ∈ Qi.

• A action labeling function, Li : Qi → Ai, mapping each state to a pure
action.

• And a transition function, δi : Qi × A → Qi, mapping a state and an
action profile to the next state.

So, an agent’s allowable pure strategies are exactly the automata that the
agent is permitted to use. Further, each agent’s mixed strategy space is a
straight-forward extension of mixed strategies in a normal form game: the set
of distributions over the set of all Moore machines available to player i.

2.1 Examples

Consider the standard prisoners’ dilemma game with the payoff matrix shown
in figure 1.

In the iterated prisoners’ dilemma, many well known strategies are easy to
represent using FA:

1. The tit-for-tat strategy, in which the agent’s first action is to cooperate,
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Figure 2: Tit-for-tat Moore Machine for Iterated Prisoners’ Dilemma
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Figure 3: Trigger Strategy Moore Machine for Iterated Prisoners’ Dilemma

and every round the agent plays his/her opponent’s last move. We get:

Qi = {qc
i , q

d
i }

q0
i = qc

i

L(qa
i ) = a

δ(qa
i , a′) = qa′

i

See figure 2 for a graphic representation for this strategy.

2. For the trigger strategy, where the agent always cooperates until the op-
posing agent defects, we get:

Qi = {qc
i , q

d
i }

q0
i = qc

i

L(qa
i ) = a

δ(qa
i , d) = qd

i

δ(qa
i , c) = a

See figure 3 for a graphical representation of this strategy.
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3 Results and Analysis

3.1 Bounding Rationality by Utility

A straight forward way to limit the complexity of the allowable automata, in
infinitely repeated games, is to incorporate its complexity into the utility func-
tion of the agent. Rubinstein[5] incorporates the complexity by imposing a cost
on each agent for each state of the automata. These payments are infinitesimal
compared to the payoffs of the game, so an agent will always choose a larger
machine if that machine will result in an increase in utility.

Incorporating this cost to explain the bounded rationality of agents can be
justified in a number of ways. Since a state machine can be used to remember
previous games, this cost can be viewed as the cost of maintaining the necessary
memory to remember the history, or it could also represent the cost of learning
the strategy.

Although, intuitively, imposing additional costs for the complexity of the
automata seems to be a valid way to constrain an agent’s rationality, doing so
eliminates strategy profiles that were previously Nash equilibria. The trigger
strategy profile for the iterated prisoners’ dilemma is no longer a Nash equilib-
rium. Since each agent has “punishment” states in his/her FA that are never
used, the agent will be better off by removing these states.

The trigger strategy explains some experimental results that show agents co-
operating in iterated games. And, unfortunately, by excluding this equilibrium,
we are losing a valid explanation for cooperation.

3.2 Semi-Perfect Equilibrium

Additionally, with infinitely repeated games, Rubinstein presents a natural ex-
tension to the Nash equilibrium solution concept called semi-perfect-equilibrium
(SPE). This equilibrium is analogous to subgame-perfect equilibrium in that
the strategy profile A = (M1,M2, . . . ,Mn) is in semi-perfect-equilibrium if for
every round t of the iterated game, A is also a Nash equilibrium of the game if
it were to start at round t.

Following this solution concept, if a strategy profile A is in equilibrium, then
every state in each Mi is used infinitely often. If it was not, and the state
q′ ∈ Mi was not used after round t, then there exists an M ′

i that omits state q′

so that agent i would be better off with M ′
i starting at round t + 1.

Forcing every state to be used infinitely often is more restrictive than adding
costs for complexity, which requires only that a state be used at least once.

Under SPE, the space of solutions for iterated prisoners’ dilemma shrinks to
include only the payoff profiles that are of the form

(u1, u2) = α(3, 0) + (1− α)(0, 3) > (1, 1)

for rational α, or where (u1, u2) = (0, 0).
So, similarly to imposing a cost for complexity, the trigger strategy is not an

equilibrium strategy under SPE. Since punishment states must be used infinitely
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Figure 4: Payoff Matrix for Midterm Game
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Figure 5: Equilibrium Strategies for Midterm Game

often, they must be incorporated into the normal play of the machine. This
restriction, however, does bear some resemblance to real life situations: many
institutions, and even human facilities, degrade and are discarded if unused for
long periods of time.

Although, it seems difficult to build strategies incorporating punishment
phases into the normal course of play, sometimes following a Nash equilibrium
without any deviation is enough to punish the other players for deviating.

For example, consider the game with payoffs from figure 4. It can be shown
that the strategies given by the pair of machines in figure 5 are in semi-perfect
equilibrium.

Unfortunately, since SPE also eliminates the trigger strategy as an equilib-
rium, we lose an explanation for rational cooperation in iterated stage games.
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3.3 Bounding Rationality By Complexity

Now, consider bounding the rationality of the agents by explicitly restricting
the complexity of their FA. This restriction represents a direct bound on the
computation and memory limits of each agent.

In finite repeated prisoners’ dilemma played N times, Neyman claims in [3]
that for automata with size bounded by N − 1, there are equilibrium strategy
profiles where each agent always cooperates. Further, he makes the claim (which
is later proved by Papadimitriou and Yannakakis in [4]) that for any k, there
exists an N such that if the size of each of the automata are in the range
(N1/k, Nk), there is an equilibrium where the payoffs to each player are within
1
k of the cooperation payoff. Neymen’s result is also improved on in [4] to show
that in the iterated prisoners’ dilemma, for any ε > 0, if at least one of the
players’ automata is bounded by 2cεN , for some constant cε, then there is an
equilibrium with average payoff within ε of the cooperative payoff to each player.

This result is extended to general games, albeit in a weaker form, by Pa-
padimitriou and Yannakakis[4] in the following theorem:

Theorem 1 (Papadimitriou–Yannakakis). Let G be an arbitrary game and p =
(p1, p2) an individually rational Pareto optimal point. For every ε > 0 there
exists cε > 0 such that, in the N -round repeated game G played by automata
with sizes bounded by 2cεN , there is a mixed equilibrium with average payoff
within ε of pi for each player i.

These results show significant promise in modeling the bounded rationality
of the agents. Note that if the complexity of the agents’ automata are sub-
exponential, but still greater than N , there are no equilibria for which the
agents cooperate in every stage of the game. However, there are equilibria that
come arbitrarily close to the cooperation payoff if the game is repeated enough
times. This outcome corresponds closely to experimental results where agents
achieve long periods of cooperation[1].

3.4 Complexity of Computing Best Response

Using FA to model agents’ rationality also allows us the possibility of restrict-
ing the time that the agents are allowed to use to compute their automata.
Bounding the agents in this way leads to a number of questions about the time
complexity of computing strategies: what is the complexity of computing the
best response to a given strategy?; does a game have a pure equilibrium in FA?;
and what is the value of a mixed-equilibrium in a zero-sum game?

We can define a game function to be g, a polynomially computable function
such that g(z, x, y) = (a, b), where z is an encoded version of the game, x and y
are encoded strategies, and a and b are the resultant payoffs. Then, we can use
the following theorem [4]

Theorem 2. (Classification Theorem) [Papadimitriou-Yannakakis]

1. The class of all languages of the form {z;x; b : there is a strategy y for
player 2 with payoff at least b } is precisely NP .
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2. The class of all languages of the form {z : there is a pure equilibrium in
game z} is precisely

∑p
2.

3. The class of all languages of the form {z; b : zero-sum game z has an
equilibrium with payoff to player 1 at least b} is precisely EXP .

4. The class of all languages of the form {z; b : game z has an equilibrium
with payoff at least b to both player 1 and 2 } is precisely NEXP .

From 1) we have that computing the best response to any given strategy is
NP -complete, and determining whether there is a pure equilibrium is

∑p
2.

So, it is sufficiently hard to compute best response and equilibrium strategies
that we have a plausible explanation that real agents are unable to compute their
optimal strategies. Using sub-optimal strategies could produce the results seen
in experimentation that do not achieve the “most rational” behaviour.

4 Conclusion

Bounded rationality has become an important concept for explaining why game
theoretic results do not correspond to experimental data. Finite automata
have become a dominate model for expressing the rationality of agents, and
we have overview ed four different methods for bounding the agents’ rationality
by putting restrictions on the FA they are allowed to use.

If we restrict the agents by requiring that they pay a cost per state of the
machines they are using, which seems intuitive, we eliminate the tit-for-tat
and trigger strategies from the set of Nash equilibria in repeated games. Un-
fortunately, both of these equilibria result in cooperation among agents; this
cooperation is exactly what we are trying to explain with bounded rationality.

Rubinstein attempts to bound the agents by considering a new solution
concept: semi-perfect-equilibrium. However, equilibrium strategies under SPE
are even more restricted then they are by a cost for state maintenance. SPE
results in limiting the solution space payoffs to rational combination of the defect
payoffs.

Fortunately, more promising results come from bounding the complexity of
the actual machines and the time an agent is allowed to use to compute their
strategies. By bounding a FA to be a size sub-exponential in the number of
the iterations of the game, we can explain extended periods of cooperation.
And, we have seen that computing best response strategies in automata, or
even determining if there are pure equilibria, is sufficiently hard for agents that
it is plausible agents would arrive at non-rational strategies. Both of these
results explain why empirical results show agents playing with long periods of
cooperation.
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