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1 Introduction

Internet users, auction bidders, and stock buyers are examples of agents who
are selfishly trying to maximize their own benefit without necessarily caring the
global objective of the underlying game such as the overall load on the network
or the overall satisfaction of agents. How does these two points of view (agents vs.
global) correlate? How much does the society suffer by the lack of coordination
between players?

The optimal social utility function happens when we have a single authority
who dictates every agent what to do. In contrast, when agents choose their own
action, we should study their behavior and compare the obtained social utility
with the optimal one.

There are currently two main approaches for studying behavior of agents.
Koutsoupias and Papadimitriou [KP99] assume that agents play according to a
Nash equilibrium; thus they, pessimistically, consider the Nash equilibrium that
gives the worst social utility and compare it with the optimal social utility. In
contrast, Goemans et al. [GMV05] consider games in which agents are reluctant
to choose mixed strategies and repeatedly choose their action by playing their
best pure responses even if there is no pure strategy Nash equilibrium in the
game.

In this note we review these two different approaches: price of anarchy and
price of sinking. In section 2 we survey some results related to the price of anar-
chy. In particular, we discuss previous researches on unsplittable flow problem,
congestion games, and a class of games, called valid utility systems, whose price
of anarchy is constant. Then, in Section 3, we introduce the price of sinking and
its value on unsplittable routing games, congestion games, and valid utility sys-
tems. The two approaches, price of sinking and price of anarchy, are compared
at the end.

2 Price of Anarchy

It’s fair to assume that in an n-agent game agents play according to Nash equi-
libria of the game. So, one can study the effect of selfish agents by considering
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the value of social utility on all possible Nash equilibria of the game. In partic-
ular, Koutsoupias and Papadimitriou [KP99] initially suggested the ratio of the
optimal social utility and the worst Nash equilibrium as a measure, in fact a
lower bound, for the amount of suffering to a society due to lack of coordination
in a game. They support their definition by computing it on simple unsplittable
flow games in which we have parallel links between two vertices. Later on, other
researches extended their result to more complex games. In the next subsection
we review the price of anarchy on unsplittable flow problem. As unsplittable flow
games are special versions of congestion games, we then mention some result re-
garding the price of anarchy on symmetric and asymmetric congestion games.
Finally, we present a broad class of games, called valid utility systems, whose
price of anarchy is bounded.

2.1 Unsplittable Flow Problem

Koutsoupias and Papadimitriou [KP99] studied the price of anarchy on unsplit-
table flow games. In the general version of this game we have n agents; agent i
wants to transfer an amount wi of flow between a source si and a destination ti
and chooses, as his strategy, a path from si to ti to transfer his flow. Unsplittable
means agents are not allowed to break their flow and transfer it partially across
more than one paths. As a result, each edge e carries some amount of traffic,
say le, going through it, and there would be a latency caused by this edge which
is a function of le and is denoted by fe(le). Assume agent i is using path Pi to
transfer his flow. The latency corresponding to him would be the sum of latencies
over all edges in Pi, i.e. wi

∑
e∈Pi

fe(le). The aim of each agent is to minimize
his associated latency whereas the social objective is to minimize either the total
latency or the maximum latency over all edges in the network.

Lets works with a toy example to illustrate the problem. Assume, as in Fig. 1,
they are two parallel links between two vertices s and t and two agents with equal
amounts w1 = w2 = 1 of flows and fe(x) = x. Moreover, assume the social goal
is to minimize the maximum latency. The optimal routing is to transfer agent i’s
flow through edge i, so the total latency would be maxe fe(le) = 1. A strategy
in which each agent is choosing one of the links uniformly at random is an
equilibrium. With probability 1/2, one of the edges will carry two units of flow
and with probability 1/2 both edges carry one unit. So, the expected maximum
latency equals 2 × 1/2 + 1 × 1/2 = 3/2. Consequently, the price of anarchy in
this network is at least 3/2 = 1.5. Koutsoupias and Papadimitriou [KP99] show
that the price of anarchy is exactly 1.5 in this case.

What if there are m parallel links between s and t and m agents with
equal amounts of flows? One equilibrium happens when each agent chooses
one of the m links uniformly at random. It can be proven that, expectedly,
θ(log m/ log log m) of agents choose a common link causing a total latency of at
least θ(log m/ log log m). But, in an optimal algorithm, agent i chooses link i to
transfer his flow; hence, the total latency would be 1. Consequently, the price of
anarchy is at least Ω(log m/ log log m). Koutsoupias and Papadimitriou [KP99]
propose this lower bound as well as an upper bound 3+4

√
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Fig. 1. A network with (a)2 (b)m parallel links.

Measure Lower Bound Upper Bound

2 parallel links Maximum Latency 1.5[KP99]
2 parallel links(different
speeds)

Maximum Latency 1.618[KP99]

m parallel links Maximum Latency θ(log m/ log log m)[CV02]
Linear latency function Total Latency 2.618[AAE05]
Linear latency function
(Unweighted)

Total Latency 2.5[AAE05] 2.618[AAE05]

Polynomial latency func-
tion of degree d

Total Latency Ω(dd/2)[AAE05] O(2ddd+1)[AAE05]

Table 1. Price of Anarchy for various cases.

of anarchy in this case. Later on, Czumaj et al. [CV02] proved that the price of
anarchy is tightly θ(log m/ log log m) for m parallel links and m agents.

A more realistic model is when links have different speeds, i.e. the latency
corresponding to an edge e is computed as fe(le)/se, where se is the speed
of link e. In this case Koutsoupias and Papadimitriou [KP99] proved that the
price of anarchy increases in the case of 2 parallel links to the golden ratio

ϕ = 1+
√

5

2
≃ 1.6111. Notice that in all previously mentioned results the social

utility is the maximum latency over all edges, i.e. maxe(le), where le is the
load on edge e.

Recently Awerbuch et al. [AAE05] considered general networks with poly-
nomial latency functions and considered the total latency as the social utility
function, i.e.

∑

e

fe(le)le (1)

For linear latency functions, i.e. fe(x) = aex + be, for non-negative ae and
be, they prove a tight bound (3 +

√
5)/2 ≃ 2.618. A lower bound example is de-

picted in Fig. 2. Assume there are four agents with demands (U, V, φ), (U, W, φ),
(V, W, 1), and (W, V, 1), i.e. agent 1 wants to transfer φ units of flow from U
to V and so on. The best way is that agents 1, 2, 3, and 4 use paths UV ,
UW , V W , and WV , respectively, which gives a total latency of 2φ2 +2. On the
other hand, one Nash equilibrium happens when agents use paths UWV , UV W ,
V UW , and WUV , respectively, which gives a total latency 4φ2 + 4φ + 2. The
ratio (4φ2 + 4φ + 2)/(2φ2 + 2) is maximized when φ = (1 +

√
5)/2 and equals

(3 +
√

5)/2 ≃ 2.618 for that value. Notice that agents have different amounts of



flows. If we restrict agents to request equal flow amounts, we get a lower bound
2.5 on the network in Fig. 2 by setting φ = 1.
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Fig. 2. A network with linear latency function and price of anarchy 2.618.

Awerbuch et al. [AAE05] also consider the more general case when fe is a
polynomial of degree d and prove an upper bound O(2ddd+1) and a lower bound
Ω(dd/2) for the price of anarchy in this case. All results are shown in Table 1.

Alternative versions of selfish routing problem are also widely studied. Rough-
garden et al. [CDR03a,CDR03b,Rou01] consider the splittable selfish routing
with various latency functions and different social utility functions.

2.2 Finite Congestion Games

One natural generalization of unsplittable flow problem is finite congestion games.
In this game agents are allowed to pick single edges instead of a whole path. For
an introduction to congestion games the reader is referred to [MS96,Ros73].
A congestion game is a tuple (N, E, (Σi)i∈N , (fe)e∈M ) where N is the set of
players, E is a set of facilities, Σi ⊆ 2E is a collection of actions for player
i, i.e. an action is choosing a set of facilities, and fe is a cost function as-
sociated with facility j. Assume A = (A1, A2, · · · , An) is a strategy profile.
The cost of A to agent i is ci(A) =

∑
e∈Ai

fe(ne(A)) where ne(A) means the
number of agents who use facility e. The social utility is either the sum of
player’s costs, i.e. SUM(A) = Σi∈Nci(A), or the maximum of players’ costs, i.e.
MAX(A) = maxi∈Nci(A). Finally, a game is symmetric if all Σi’s are equal and
is asymmetric, otherwise.

Christodoulou and Koutsoupias [CK05] recently studied the price of anarchy
for finite congestion games for symmetric and asymmetric cases as well as linear
and polynomial latency functions. Their results are listed in Table 2

2.3 Valid Utility Systems

One obvious requirement in order to have bounded price of anarchy is that
the social utility and agent’s individual utilities must be of the same type. For
example, if agents try to maximize the number of apples but society wants the
maximum number of oranges then there is no hope of getting bounds on the



Linear Latencies Polynomial Latencies

SUM MAX SUM MAX

Symmetric 5/2 5/2 dθ(d) dθ(d)

Asymmetric 5/2 θ(
√

n) dθ(d) Ω(nd/(d+1)), O(n)
Table 2. The price of anarchy on finite ingestion games.

price of anarchy. Assuming the above trivial requirement, Adrian Vetta [Vet02]
in a seminal work defines a broad class of games called valid utility systems and
proves that their price of anarchy is at most 2.0, i.e. any Nash equilibrium yields
a social utility at least half as much as the optimal social utility. Lets define
utility systems and then state his results.

In valid utility games, for each agent i, there exist a ground set Vi. An action
of agent i corresponds to choosing a subset of Vi. In particular, we restrict agents
to choose any subset by defining a feasible subset Fi ⊆ 2Vi from which agent
i chooses his actions. Let V = ∪iVi. Both agent’s utilities function, αj ’s, and
social utility function, γ, are defined as function from 2V to R+.

A game is called valid utility system if it satisfies the following three basic
conditions.

1. Cake Condition: The social utility and private utility functions must be of
the same type; moreover, the sum of private utilities over all agents by play-
ing any strategy S does not exceed the social utility over that strategy, i.e.

∑

i

αi(S) ≤ γ(S) (2)

where αi(S) and γ(S) are the expected utility of agent i and the social utility
when players play according to the strategy S, respectively.

2. Submodularity: The social utility function is sub-modular, i.e. f(X ∪ D) −
F (X) ≥ f(Y ∪ D) − F (Y ) when X ⊆ Y .

3. Vickrey Condition: The private utility of an agent is not less than the change
in the social utility if he refuses to participate.

The intuition behind the second condition is simple: If a town does not have
any grocery store then establishing one has a lot more benefit than when the
town has hundreds of grocery stores.

The third condition is similar to the no single-agent effect condition that we
had in studying VCG mechanism. It says for any strategy S if agent i refuses to
participate then the difference in the social utility is not bigger than the utility
of agent i, i.e. αi(S) ≥ γ(S) − γ(S−i).

The three major results in [Vet02] are listed below. Let OPT be the value of
the optimal social utility.

– For any valid utility system and any Nash equilibrium S, pure or mixed, the
social utility obtained by playing according to S is at least half as much as



OPT minus some additive functional values. The exact inequality is

OPT ≤ 2γ(S)−
∑

t:si=σi

(γ(S)−γ(S−i))−
∑

t:si 6=σi

(γ(Ω∪Si)−γ(Ω∪Si−1)) (3)

where
• Ω = (σ1, σ2, · · · , σn) is the strategy that gives the optimal utility.
• Si is the strategy in which players 1, 2, · · · , i play according to S and

other players take the empty set ∅ as their action.
• Ω ∪ S is defined in the following way. Let S = (s1, s2, · · · , sn) and sj

be a mixed strategy in which agent i plays actions a1
j , a

2
j , · · · , at

j with

probabilities p1
j , p

2
j , · · · , pt

j , respectively. Then Ω∪S is a strategy in which

agent j plays ak
j ∪ σj with probaility pk

j for k = 1, 2, · · · , t. Notice that

ak
j is a subset of Vj and σj is the action of agent j in Ω.

– In case that the utility function γ is increasing, i.e. γ(X) ≤ γ(Y ) whenever
X ⊆ Y , then the additive terms in the above equations can be omitted; thus,
for any valid utility system and increasing utility function

OPT ≤ 2γ(S) (4)

– He also considers the existence of pure strategy Nash equilibria in the special
case that a valid utility system is basic, i.e. the equality holds in equation 2.
In this case pure strategy Nash equilibria always exist.

– He also proposes competitive versions of facility location and k-median prob-
lems and show that they are valid utility systems; hence their price of anarchy
is at most 2.0.

A wide range of games fall in the category of valid utility systems. Examples
are market sharing games[GLMT04], distributed caching games[FGMS05], and,
as we saw earlier, facility location games, traffic routing, and auctions [Vet02].

3 Price of Sinking

There is one major assumption behind considering price of sinking for measuring
the lack of coordination in a game. We assume that agents tend to paly according
to Nash equilibria of the game. There are, however, several drawbacks in this
assumption. It often happens in practice, for example in auctions, that agents are
reluctant to adopt mixed strategies; instead they are willing to repeatedly play
according to pure strategies even if there is no pure strategy Nash equilibrium
in the game. By the way, Nash equilibria are stable points in a game rather than
optimal points, so agents might not necessarily be looking for those points.

By assuming that agents play repeatedly according to some pure strategies,
Goemans et al. [GMV05] introduce a new measure for the lack of coordination,
price of sinking. Lets denote each pure strategy profile S = (a1, a2, · · · , an) by a
node in a directed graph and connect node A to node

A ⊕ a′
i = (a1, a2, · · · , ai−1, a

′
i, ai+1, · · · , an)



only if a′
i is agent i’s best response to S−i. We denote this digraph by D. Agents’

repeated moves correspond to walks across the above described digraph. What
happens ultimately? Agents may end up in a node u without any outgoing edge.
Such a node u obviously corresponds to a pure strategy Nash equilibrium in the
game. This happens only when D is acyclic. What if it is not?

A strongly connected component in a digraph is a maximal set of vertices
that are mutually connected, i.e. there is a path between any two of them. It
is well known that every digraph can be partitioned into strongly connected
components. If we replace each strongly connected component x by a single
vertex vx and connect vx to vy if there is an edge from a vertex in x to a
vertex in y then we obtain an acyclic digraph, say B(D). This is often referred
as the block digraph in Graph theory literature. A digraph with three strongly
connected components is depicted in Fig. 3. As you see it has no pure strategy
Nash equilibrium.
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Fig. 3. A digraph with its block digraph.

The block digraph is always acyclic and, hence, has some vertices with out-
degree zero. (va and vc in Fig. 3) Such components are called sink equilibria;
the reason for this terminology is simple: once we reach a sink equilibrium we
never leave it. The price of sinking is defined as the worst case ratio of the social
utility and any sink equilibrium. How do we compute the social utility over a
sink equilibrium? Any infinitely long random walk over a strongly connected
component Q reaches each vertex u with some fixed probability πQ(u). πQ is is
known as the stationary distribution. The social utility over a sink equilibrium
is its expected value, with respect to the stationary distribution, of the social
value on its states. In Fig. 3 all stationary distributions are uniform. Formally
speaking, The social utility over a sink equilibrium Q is defined as

γ(Q) =
∑

S∈Q

πQ(S)γ(S) (5)

where γ is the social utility function.
Gomeans et al. study the price of sinking over two category of games: un-

splittable selfish routing and valid utility systems.

– For unsplittable selfish routing problem (as well as congestion games) they
prove that the price of sinking is at most O(22dd2d+3), for any latency func-



tion of degree d. Compare this with the O(2ddd+3) upper bound [AAE05]
for the price of anarchy.

– As for valid utility games, they prove that price of sinking always lies between
n and n + 1.

They also prove some hardness results regarding the problem of computing
price of sinking in general.

4 Price of Anarchy vs. Price of Sinking

How does price of sinking compare with the price of anarchy? As we said earlier,
price of anarchy is based on the assumption that agents adopt (pure or mixed)
strategy Nash equilibrium. In contrast, price of sinking is based on assuming
that agents only adopt pure strategies but do repeated moves. Based on the
latter assumption, Goemans et al. propose a valid utility game in which every
possible outcome of the game, by repeatedly playing best-responses, is less than
the optimal social utility by a factor of n. However the price of anarchy in such
games is at most 2.0 according to [Vet02]. Consequently, the price of anarchy is
unrealistic in this case.
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