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Abstract

When multiple rational utility-maximizing agents make some interac-
tions, there are opportunities for them to collaborate on a group activity.
In such occasions, they should be able to decide whether to commit them-
selves to that activity in a way that they can maximize their own util-
ity. This problem is referred as the initial commitment decision problem
(ICDP). In this paper, we present a brief literature survey and describe
the ICDP by explaining how it is modeled as a combinatorial auction in
which agents bid on sets of roles in the group activity. We also argue
what kind of technique is more appropriate for solving this problem, and
indicate future directions of our research.

1 Introduction

In multi-agent environment, rational, autonomous agents have many opportu-
nities to engage themselves into some kind of collaborative action. In order to
make these decisions, they should be able to assess their opportunity with their
existing private commitments on other activities. Collaborative planning is in
that respect more than just coordinations of multi-agent planning because it
involves intentions of multiple agents. The initial commitment decision prob-
lem is that of addressing how to evaluate new opportunities for a collaborative
activity in the context of a group of agents where each agent has their exist-
ing commitment to other individual and/or group activities. The problem is
originally motivated by the work of Horty and Pollack [7], which addresses a
decision making problem for a single agent action in the context of existing
private commitment, and formulated in [9] with an assumption that agents are
utility-maximizers.

There are two major difficulties in the ICDP. One is that agents have no
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access to information about the existing commitments of others in the group.
The other is that the decision (i.e., choice of an action) which is best for the
group may not necessarily be best for an individual agent alone. With these
difficulties, a decision making process for collaborative activity is based on two
important evaluations: the potential contributions each agent could make to
the group activity in terms of possible sub-actions s/he could do, and possibili-
ties for assigning the remaining tasks to other agents in an individually rational
manner. It is reasonable to assume that agents may be reluctant to share their
individual contexts with others. Thus the former evaluation is computed lo-
cally by examining each agent individual background contexts of commitments.
The latter one is computed globally and takes the potential contributions of all
agents.

Hunsberger and Barbara [9] model this problem as a combinatorial auction
and determine an allocation with a minimal cost (i.e., the best initial com-
mitment decision) based on a variation of Sandholm’s winners determination
algorithm [12]. There have been some work in a similar problem. In an applica-
tion of agent-mediated Electronic Commerce [3], there are two types of agents:
a customer agent who plays a role of the customer and a supplier agent who
plays a role of the supplier. A customer agent selects a recipe and issues a call
for bids from a set of supplier agents. Each bid is placed on a set of tasks with
the information about the cost of performing a set of tasks, the cost of each
task if it is performed separately, and time constraints on tasks. The authors
use a generalized annealing search with heuristics based on cost, risk, feasibility
and task-coverage. However, their search space quickly explodes with infeasible
solutions because they use heuristic based on a combination of several factors.

This paper presents a mechanism of the ICDP and how it is modeled as a
combinatorial auction [2, 4, 10, 14]. Both local and global computations de-
scribed above are coordinated throughout the auctions. Towards the end, we
further argue what type of algorithm is more appropriate for this problem and
indicates a few possible directions of our research in future.

The structure of this paper is as follows. Section 2 briefly reviews combina-
torial auctions and the winner determination problem. In Section 3, we present
the representation of actions and recipes, and explain the mechanism of the
ICDP. We argue an appropriate choice of a combinatorial auction algorithm for
the ICDP in Section 4, and conclude this paper in Section 5.

2 Combinatorial Auctions

Combinatorial Auctions [2, 4, 10, 14] are auctions in which there are multiple
goods that are auctioned simultaneously, participants who may place bids on
arbitrary combinations of these goods, and an auctioneer who must determine
an allocation of goods that maximizes the total revenue.

In general, a combinatorial auction is modeled as a tuple (N,G, v1, . . . , vn),
where N is a set of n agents and G is a set of m goods, and for each agent
i ∈ N , vi : 2G → < is a valuation function. We suppose an auctioneer has a set
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of goods G = {g1, g2, . . . , gm} to be auctioned. Bidders value different subsets
or bundles of goods, S ⊆ G, and offer bids of the form (S, p) where p is the
amount the bidder is willing to pay for a bundle S. Given a collection of bids
B = {(Si, pi) : i ≤ n}, we define an allocation to be any L = {(Si, pi)} ⊆ B
where a set of bundles Si, which make up L, are disjoint. The value of an
allocation is given by

∑
{pi : (Si, pi) ∈ L}. The objective of this combinatorial

auction is to determine an optimal allocation of goods that maximizes the total
revenue to the auctioneer.

The winner determination problem is that of finding an optimal allocation L∗

given a bid set B. It is a straightforward combinatorial optimization problem,
which can be formulated as an Integer Programming (IP). Let xi be an boolean
variable which indicates whether a bid on Si is satisfied. Then we need to solve
the following IP:

L∗ = arg max
L∈B

∑
i

pixi

Subject to:
∑

{xi : gk ∈ Si} ≤ 1,∀k ≤ m (1)

This formulation has a variable per bid, which counts to n variables in total, and
a constraint per good, which counts to m constraints in total, with constraints
having z terms on average, where z is the average number of bids in which a
good occurs. Winner determination is equivalent to the weighted-set-packing
problem [11] and thus is known to be NP-complete. However, generic combina-
torial optimization techniques such as CPLEX IP solution techniques [1, 2] has
been demonstrated to work well in practice. Also, complete methods [4, 13],
which guarantee optimality, and stochastic local search techniques [6] have been
already proposed in the AI literature and shown to successfully solve problems
of reasonably large scale. They are often even faster than CPLEX.

3 Initial Commitment Decision Problem

The problem we tackle in this paper is the initial commitment decision problem
(ICDP), which uses combinatorial auctions to decide whether rational, utility-
maximizing agents should commit to a group activity. This section describes
representations for actions and recipes, and introduces a mechanism of the
ICDP.

3.1 Representation of Actions and Recipes

In order to understand the mechanism of the ICDP, we need to represent actions
which agents can take, the type of actions agents are capable of, and their roles
in a package of action plans called recipe. These representations are originally
based on Grosz and Kraus’ SharedPlans theory of collaborative planning [5], but
extended to take roles into account [9]. There are two different actions: single
actions and group actions. A single action represents an action executed by an
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individual agent under appropriate conditions whereas a group action, which
is often more complex than a single action, represents a collaborative action of
multiple agents. Actions are classified by their type. A recipe for a particular
type of action represents a group action by including a set of sub-actions and
constraints that are required for conducting the type of the group action.

Figure 1 shows a simple example of a recipe that describes a plan of executing
a collaborative action of laying a pipeline, which is also presented in [9]. Each
node is a sub-action that an agent can take and is labeled with the name of the
sub-action. Precedence constraints on the execution times of the various sub-
actions are enforced by arrows in the figure. For example, the recipe can enforce
that a sub-action called Weld Pipe must be done 20 minutes before Fill Ditch.
Although this example is simple, recipes can be quite complex with recursively
defined sub-actions and be expressed in multiple levels of hierarchy [8]. There
are four different roles, R = {ri}i=1...4, with which agents can involve. These
roles and a set of sub-actions associated with each role are specified by the
recipe. We assume that each sub-action is covered by only one role and an
agent who is assigned to a specific role is responsible for sub-actions of that
role.

There is a computational advantage in bid generation by considering roles
of agents: grouping sub-actions for each role reduces the number of bids to
generate and thus reduces the computational complexity. If the number of roles
is much fewer than the number of sub-actions, it is easy to reduce the search
space of available sub-actions since they are classified in different roles. If an
agent is unable to do one of sub-actions in his role, then the agent may consider
doing sub-actions in other roles without going through the rest of sub-actions
in the original role.

End

Prep_Pipe

Dig_Ditch

Lay_Pipe

Begin

Plant_GrassFill_Ditch

Load_Junk

Weld_Pipe

Roles: 

Digger

Welder

Loader

Grass_Planner

Figure 1. Sample recipe: Lay Pipeline
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3.2 Mechanism for ICDP

A mechanism, which agents use to solve the ICDP, is composed of a combina-
torial auction in which agents bid on roles in a group activity. We suppose that
rational, utility-maximizing agents encounter an opportunity to engage in a col-
laborative activity, which needs to be done between the specific time interval,
[tb, te] where tb is the time to begin the activity and te is the time to finish it,
and the expected cost of the activity is P0. The agents therefore commit them-
selves to the activity only if they can complete the activity by a cost less than
P0. There are several key features of the mechanism. First, bids are constrained
with execution times and roles of the activity. Second, agents’ valuation to their
private schedules of existing commitment is not revealed to other agents. Fi-
nally, agents can condition their bids the choice of recipe so that they can place
a bid on the particular set of roles.

The ICDP mechanism is composed of k separate auctions where C = c1, c2, . . . , ck
is a set of k recipes available for doing the group action. Each auction deter-
mines which group uses each recipe. For instance, Table 1 describes a sample
bid Bi for the recipe presented in Figure 1:

Bid Bi

Roles, Ri {Digger, Loader}
Payment, Pi $200
Global constraint, Ψi [2 : 20pm− 5 : 00pm]
Sub-action constraint, ψi {Lay Pipe < 3:30pm}

Table 1. Sample bid for a recipe ci

Table 1 describes that the bidder proposes to play two roles {Dig Ditch, Load Junk}
with the payment Pi = $200 with a global constraint Ψi, which constrains the
stating and ending time of the activity, and with a sub-action constraint ψi,
which constraints that one of Loader’s sub-actions Lay Pipe must be done be-
fore 3:30pm.

With additional constraints on execution times of the sub-actions, the objec-
tive of this combinatorial auction problem is to minimize the cost of the group
activity. By slightly modifying Eq. 1, the problem is formulated as follows:

L∗ = arg max
L∈B

∑
i

−pixi

Subject to:
∑

{xi : gk ∈ Si} ≤ 1,∀k ≤ m

Ψi and ψi (additional time constraints) (2)

If an optimal allocation L∗ allows agents to do the group activity at a cost less
than the original cost P0, then agents should commit themselves for collabo-
ration. In [9], the authors use a modified version of Sandholm’s winner deter-
mination algorithm [12], which is augmented by time constraints and modified
to minimize the total value of L∗ rather than maximizing it. In order to keep
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a consistent set of sub-actions in a given recipe, they maintain a partial or-
der of sub-actions, which does not violate time constraints, by propagating the
consistency check throughout the generation of new bids.

4 Discussion

As it is shown thus far, the ICDP can easily be modeled as a combinatorial
auction. In this section, we argue that a modified Sandholm’s winner determi-
nation algorithm used in [9] is not the best choice for this problem.

There are several reasons to support our claim. First, the ICDP is not scal-
able with a modified Sandholm’s algorithm because it is shown that when the
number of roles is more than 10 with 50 different bids, the case exhibits an
exponential computational blowup [9]. Although it is shown in [12] that winner
determination in a combinatorial auction is exponential in the number of items
to be auctioned, we need a faster algorithm for a larger size of the problem which
is often a case in practice. Second, due to the specific nature of the problem, an
initial commitment decision does not have to be optimal, but needs to be near
optimal. In other words, near optimal solutions can be suffice for the initial
commitment decision and its decision process can be iteratively improved while
the engagement of the activity.

Therefore, we do not have to use complete methods which may sacrifice speed
for guaranteeing optimality, and instead suggest to use stochastic techniques
such as that of Hoos and Boutilier [6] which does not guarantee optimality, but
often comes up with a near optimal solution faster than complete methods. Due
to a tight time constraint, we could not do any implementation to verify our
claim. However, Hoos and Boutilier’s stochastic local search techniques appear
to hold significant promise because they demonstrate its superior performance
in the speed of computation and competitive performance in the quality of so-
lution (i.e., near optimality) against Combinatorial Auction Structured Search
in [4].

5 Conclusion

In this paper, we present the initial commitment decision problem and a mech-
anism that agents can use to solve the problem. It is straightforward to see how
the ICDP is modeled as a combinatorial auction and it can be solved by a winner
determination algorithm. In the previous section, we argue which techniques for
solving winner determination in a combinatorial auction are more appropriate
for this problem, and claim that stochastic techniques by Hoos and Boutilier [6]
seems to be better than a modified Sandholm’s winner determination algorithm
[9, 12]. Although we could not conduct experiments to support our argument,
it is certainly worthwhile to confirm our claim by implementing existing tech-
niques including complete methods and stochastic search techniques. As for
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future directions of our research, we suggest to implement different techniques
for solving the ICDP to confirm our claim, and further investigate the possibility
of applying this problem to implement collaborative activity of multiple robots
in multi-agent robotics environment.
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