Incentive Mechanisms for Peer-to-Peer Systems

Gitika Aggarwal
Sharath J. George

December 9, 2005

Abstract

Peer-to-Peer (P2P) systems allow participants to share their compu-
tational, storage, and networking resources to the benefit of every par-
ticipant. Most P2P systems assume that all participants in the system
follow the protocols and observe the system’s fair use policies. However,
in a system with open or loosely controlled membership, participants have
a self-interest in modifying their behaviour if it allows them to consume
the network’s resources without contributing any of their own. As the
number of these Free Riders in the P2P network increases, it not only
decreases the effective performance of the network, but also decreases the
incentive for others to participate. This brings in the need for good incen-
tive mechanisms to motivate the peers to participate and penalize them
if they dont participate. Gnutella and Torrents are two popular P2P net-
work protocols. In this paper we examine several incentive mechanisms
that could help improve the Free Rider problem in these networks.

1 Introduction

Peer-to-peer (P2P) systems allow participants to share their computational,
storage, and networking resources to the benefit of every participant. This co-
operative sharing gives participants access to an abundance of resources they
could not afford individually. It also enables organic scaling as the system
evolves, while requiring no dedicated infrastructure beyond network connectiv-

ity.

Most existing P2P systems are designed to address issues such as scalabil-
ity, load-balancing and fault-tolerance. However, many systems assume that all
participants in the system follow the protocols and observe the system’s fair
use policies. However, in a system with open or loosely controlled membership,
participants have a self-interest in modifying their behavior if it allows them to
consume the network’s resources without contributing any of their own. This
phenomenon of selfish individuals who opt out of a voluntary contribution to a
group’s common welfare has been widely studied, and is known as the free-rider
problem.

2 Free-Riding in P2P Systems

There are several fronts on which a participant can attempt to free-ride the
system’s resources. Several forms of free-riding are summarized below:

P2P file-sharing systems provide decentralized file storage to allow users to
download files directly from one another. The work of serving files in virtu-
ally all current P2P systems is performed for free by the systems’ users. Since
users do not benefit from serving files to others, many users decline to return
the favor. Thus, these free-riders refuse to contribute their own resources (disk
space and network bandwidth) to the system. In fact, two recent studies of the
Gnutella network have found that a very large proportion of its users contribute
nothing to the system.

To ensure the scalability and robustness of the system, as well as to avoid
some legal issues, a centralized database of content of each peer usually does
not exist in a P2P system. Instead a distributed catalog of content is favored
in which each peer only maintains a list of resources/services of their own, and
maybe also of their acquaintances and neighbors. In this distributive model
peer discovery is realized via message relaying between peers so that a mes-
sage for resource searching is propagated in the system with a word-of-mouth
effect. However, a peer may simply drop a message that is sent from other peers
for relaying, for the purpose of saving communication bandwidth and energy.
Therefore a message relaying P2P system is vulnerable to the free riding prob-
lem. Since a sound P2P system relies on the contribution of resources from
each individual peers, free riding can cause severe degradation of the system
performance or even paralyze the system.

Unless the P2P system implements a mechanism to reward contributors or
penalize defectors, the equilibrium strategy would always be to defect or free-
ride, thus degrading the system’s performance and also demoralizing the con-
tributors. An effective strategy to counter this problem would be to implement
an incentive mechanism so that each participant is not expected to contribute
to the network altruistically, but to increase the utility that he is premitted to
derive from the network. Hence, the incentive mechanism should be such that
the equilibrium strategy for each peer would be to contribute to the network and
in the event of defection, would cause degradation or no service to the defector.

Ultrapser

@

Leaf Peer

Figure 1: Architecture of Gnutella

3 Gnutella 0.6

3.1 Architecture

The peers in a Gnutella network [1] are classified as ”leaf peers” and ”Ultra-
peers”. Peers which have a higher bandwidth and processing power can choose
to be ultrapeers. A hierarchy is imposed on the network. Ultrapeers exist at
the first tier and each ultrapeer is connected to one or more other ultrapeers.
Below this tier is the tier of leaf peers. Each leaf peer connects to one or more
ultrapeers. Leaf peers don’t establish connections with other leaf peers. An ul-
trapeer acts as a proxy to the Gnutella network for the leaf peers connected to
it by replying to queries on behalf of the leaf peers. This reduces the number of
nodes on the network involved in message handling and routing, and the actual
traffic among them.

3.1.1 Peer Discovery

Peer discovery in a Gnutella network doesn’t depend on a centralized server.
Peers are able to locate other peers on the network through the network itself.
When a peer needs to discover the addresses of other peers on the network,
it sends a PING message to all the nodes that are connected to it. In turn,
whenever a peer receives a PING message it replies with a PONG message
and then propagates the PING message it received to the other peers that are
connected to it. Similarly PONG messages are also relayed through the network
and are relayed back to the source which sent the PING message. So a peer
who sent PING messages receives the addresses of other peers from the network
from all the PONG messages that return to it. Once it has a list of peers, it
can choose which peers it wants to connect to.

3.1.2 Searching and Resource Location

A peer issues a query by passing the query string to each of the peers it is
connected to, through a QUERY message. When a peer receives the QUERY
message, it passes it on to all the other peers it is connected to, except to the
peer from which it received the query. Besides passing on the query to other
peers, each peer checks if the query string matches with any of the resources
it is sharing. If there is a match then it passes a QUERY-HIT message back
to the peer from which it received the QUERY. The QUERY-HIT message is
transmitted back all the way to the peer which originated the query.

3.1.3 Data Transfer

Once the source peer receives all the QUERY-HIT messages it then selects one
or more peers from among the ones that replied and initiates a direct connection
with those peers for the data transfer.

4 Incentive Mechanisms for Gnutella

Since there is no centralized control in a Gnutella network, the incentive mech-
anism has to be enforced in a distributed fashion by implementing it in each
node.

4.1 Intelligent Club Management

In this incentive mechanism, the Gnutella network is conceptualized as a collec-
tion of clubs [5] operated by ultrapeers who seek to maximize their club value,
while the leaf node connects to the right clubs in order to maximize their private
utility.

4.1.1 Leaf peer strategy

Let S be the set of all ultrapeers that a leaf node 1 is connected to. The utility
of 1 is calculated by:

uly= Y V(X)
(

X|X€S)

V(X) is the utility provided to a leaf peer ! by an ultrapeer X that [is

connected to.
VX)= Y axol')-pxc(l)
I'eL|l'#l

Where L is the set of all leaf nodes that the ultrapeer X is connected to.

v(l’) is the value gained by [from I’ and ¢(I’) is the cost incurred by I because
of I’. The value contribution of I’ v(l'), to I is evaluated as a function of the
number of bytes shared by I’ (sb), the number of files shared by I’ (sf), the

number of query hits returned from I’ (¢h) , the bandwidth provided by I’ (b),
and the distance between ! and I’ (d).

v(l") = f(sb, sf,qh,b,d)

A leaf assigns a higher utility value to leaf nodes which share more content, have
higher bandwidth and are geographically closer. The cost ¢(l’) is a function of
the number of queries that I’ generates (q), and the number of bytes that it
downloads (bd).

c(l') = f(q,bd)

After some interval of time ¢, the leaf node recalculates the utility value of each
ultrapeers that it is connected to. It also discovers a new set of ultrapeers (D).If
any ultrapeer in d € D has a higher utility than an ultrapeer X € S, then [
disconnects from X and connects to d.

4.1.2 Ultrapeer Strategy

The utility of an ultrapeer is the weighted sum of the expected utilities provided
by each of the leaf nodes that it is connected to. The weights can be decided
based on the bandwidth of the leaf node and/or its distance from the ultrapeer.
Each ultrapeer knows the set of shared content for each of its leaf peers, and
also the other attributes (mentioned in the previous section) that each of the
leaf peers use to calculate their individual utility. This enables the ultrapeer
to calculate the value and cost each child leaf attributes to the other leaf peers
connected to that ultrapeer.

An ultrapeer can accept only limited number of connections from leaf peers.
When an ultrapeer reaches capacity and recieves an incoming connection request
from a new leaf peer A, it checks if there exists a leaf peer B connected to it
that provides lesser utility than A. If yes, then it disconnects B and accepts
the connection request from A. This strategy causes the free-riders to get
disconnected by the ultrapeers often and hence provides incentive to all the leaf
nodes to contribute to the network.

4.2 Selfish Link-based InCentive Mechanism (SLIC)

Gnutella uses the flooding-based search mechanism, i.e., when a node wants to
find a particular piece of data, it sends a search query to the peers that it is
connected to on the P2P network and these peers in turn forward this query
to the peers that they are connected to. If any of these peers refuse to forward
the query, then the potential search space of the querying peer could reduce
quite significantly (depending on the number of peers that it is connected to).
Hence, in Gnutella, the flooding based search method enables neighboring peers
to control each others’ access to the rest of the network.

WML W13

Figure 2: Example of mutual access control in Gnutella

Consider two peers A and B that are connected via Gnutella. Peer B may
not necessarily have the files that peer A is interested in. Yet, B does provide
service to A by contributing its bandwidth to forward A’s queries to the rest of
the network. SLIC [6] acknowledges this as a significant contribution. It allows
each peer to "rate” its neighbors and to use the ratings to control how many
queries from each neighbor to process and to forward on. Peer A would increase
the rating of peer B if B provides service to A either directly (by answering its
queries) or indirectly (by nodes reachable via B). If A gives a high rating to B,
then it would process and forward more queries from B. Conversely, bad service
would reduce rating and the number of queries serviced. In other words, SLIC
uses this method of rating as a way of retaliation if a node does not contribute
or connects to nodes that do not contribute to the P2P network. Hence, this
provides the nodes an incentive to share content and also connect to nodes that
share content.

To distinguish good neighbors from bad ones, each peer u maintains a weight
W (u,v) for each neighbor v where 0 < W(u,v) < 1. A weight of 1 indicates an
excellent neighbor and a weight of 0 indicates a useless neighbor. A peer decides
the level of service that it would provide to each of its neighbors based on the
weights associated with them. If a peer u is sharing a total bandwidth b, then

Tomrent
Server

Figure 3: Architecture of Torrents

the piece of bandwidth allotted to neighbor v by peer u, (B(u,v)) is given by:

_ W (u,v)
erN W(uv :L’)

where N is the set of all neighbors of u. Each peer also updates the weight it as-
sociates to all its neighbors periodically. It uses an exponential decay mechanism
for updating the weights it associates with each of the neighbors. If W (u,v)
denotes the weight u assigns to v in the previous period, W’(u,v) denotes the
new weight for the next period and I(u,v) denotes the quality of service from
a neighbor v during this period, then:

B(u,v) * b

W' (u,v) = ax W(u,v) + (1 —a) * I(u,v) where0 <a< 1

5 Torrents

5.1 Architecture

The Torrent P2P network [2] is a server based network. All the peers need to
be connected to a torrent server (tracker) to be a part of the network. Each
tracker tracks only a single file ie it stores information about all the peers that are
sharing the file and/or wants to download that file. Each file is split into chunks
of 128 KB and each of these chunks are considered as individual resources.

5.1.1 Searching and Resource Location

When a peer wishes to enter the network, it connects to the tracker. So
the tracker knows the addresses of all the peers that are currently download-
ing/sharing chunks of the file that the tracker tracks. Peers are dependent on
the tracker to locate the other peers which are sharing chunks of the file. To
find the addresses of these peers, it sends a request to the tracker. The tracker
returns a random list of the addresses of the peers that are currently sharing
chunks of the file.

5.1.2 Seeding

A seeder is a peer that has all the chunks of a file. To initialize a tracker for
that file, there has to be one or more altruistic seeders which upload all chunks
of the file to the network. However a seeder does not upload all chunks to just
one peer but distributes all the chunks among multiple peers in the network.
Once the seeder uploads all the chunks into the network, it is free to withdraw
from the network, although no other peer in the network may have all the
chunks of the file. The peers can get all the chunks from each other by giving
away /exchanging them among themselves.

5.1.3 Peer to Peer Data transfer

A peer receives the addresses of the other peers which have the partial/full file
that it wants to download. It then connects to those peers directly. To each of
the peers it connects to, it sends a request for data transfer for the chunks it
wants. It also needs to announce the chunks it shares to the peers it connects
to. This makes barter/giveaway decisions to be made at the peer level.

5.2 Choking - Default Incentive Mechanism in Torrents

The default incentive mechanism for Torrents is called Choking [3]. Choking
refers to the denial of upload of a shared resource to another peer which sends a
request for it. Depending on the bandwidth available to a peer it decides on the
number of connections it leaves unchoked. Decisions as to which connections to
unchoke are based on the current download rates it receives from the nodes from
which it is downloading data. If the download rate from a choked node is higher,
then it gets a higher priority to be unchoked. The server does no centralized
resource allocation by itself, and hence it is upto the peers to implement it. To
avoid bandwidth wastage from repeated choking and unchoking, the decisions
are made only after fixed intervals of time. This is called Restricted Choking.

As a method of discovering connections which can lead to potentially higher
downloads, peers also unchoke a previously disconnected node with a probability
p. This makes it possible for a peer to increase its bandwidth utilization to an
optimum level. This is referred to as Optimistic Choking. It corresponds to the
variation of tit for tat for a repeated prisoners dilemma game where the first
move is to always cooperate.However, if a node finds that most of the nodes
that it is uploading to are choking it, it could snub the nodes which choked it
by canceling uploads to those nodes midway.

Fl.Pn-2

o @ m‘m
23 T

Figure 4: Example of 2,3-way exchange strategies

6 Incentive Mechanisms for Torrents

6.1 Incentive Mechanism with N-way exchanges

A two-way exchange strategy ensures that a resource is provided to by another
peer only if that peer provides something in return. In an N-way incentive
mechanism [4], a service need not be provided directly to the provider, but more
generally priority is given to peers who are part of an N-way cycle exchange of
which the provider is a part of.

6.1.1 Increased Network Utilization

If each peer participated only in a two way exchange, and a cylic resource depen-
dency chain existed, only one transfer could take place at one time. This leads
to inefficient bandwidth usage as all nodes cannot participate in data transfer
at the same time. If a cycle of transfer is established, then all the nodes in
the cycle would simultaneously participate in data transfer, leading to higher
network utilization.

To implement this incentive mechanism, each node maintains a request tree.
A peer with no incoming requests has an empty request tree. An incoming
request from another peer also contains the request tree of the requesting peer.
The peer then generates a graph of requests from all the nodes that requests
resources from it. From this graph it is able to locate resource request cycles
involving more than 2 nodes.

Once a cycle has been identified in the generated request tree, the peer passes
on a token to the other end of the chain of the identified chain of requests. This
notifies the other node of the existence of a complete cycle of requests. If that
token is propagated back to the initial peer, passing through all the nodes in
the chain, the cycle of data transfer involving the n nodes is initiated.

Ezxample: Consider Figure 4. Node A receives the request trees from the
nodes P1, P2 and P4 each passing on information about their request trees.
From this combined request graph A finds a resource request cycle with three
nodes A, P2 and P9, where P9 requests 06 which P2 shares, P2 requests 02

A
:' s @"" '8 “-@
Pl Z P4 Hi r2 e
' “I i "
Foo™e Boea™E
1
Fll o -] Pe Pl P9 " Ps rs
: .
@ / \ F;r ‘,: \‘\ @
r10 P7 Ps PLO P P8

Figure 5: Example of a Resource Request Tree

which A shares and A requests an object which P9 shares. A then sends a token
to P9 indicating the existing of resource request cycle, and this token is passed
on by P9 to P2 which in turn passes it on back to A. Once the token is returned
back to A, A starts uploading 02 to P2, which in turn starts uploading 06 to
P9 which in turn starts uploading to A.

7 Conclusion

In this study we have analyzed the structure of the Gnutella and Torrent Peer
to Peer networks. We further analyzed some relevant incentive mechanisms pro-
posed in the literature and suggested methods by which they can be integrated
into the existing networks without changing the protocols themselves. Imple-
mentation of these incentive mechanisms is expected to curb the problem of
Free-riders in these networks and hence increase the overall network efficiency.
The incentive mechanisms proposed can be implemented at the peer level and
do not depend on a centralized server to implement them. This ensures seamless
integration of these methods into present networks.

References

[1] Gnutella 0.6 http://rfc-gnutella.sourceforge.netsrcrfe-0_6-draft.html.
[2] Torrent Protocol http://www.bittorrent.com/protocol.html.

[3] Bram Cohen, “Incentives Build Robustness in BitTorrent”,
http://www.bittorrent.com/bittorrentecon.pdf.

10

[4]

Kostas G. Anagnostakis and Michael B. Greenwald, ”Exchange-based In-
centive Mechanisms for Peer-to-Peer File Sharing”, Proceedings of the 24th
International Conference on Distributed Computing Systems (ICDCS’04).

Atip Asvanad, Sarvesh Bagla, Munjal H. Kapadia, Ramayya Krishnan,
Michael D. Smith and Rahul Telang, ” Intelligent Club Management in Peer-
to-Peer Networks”, Proc. of the Workshop on Economics of Peer to Peer
Systems, 2003.

Qixiang sun, Hector Gracia-Molina, "SLIC : A Selfish Link Based In-
centive Mechanism for Unstructured Peer-to-Peer Networks”, Proceedings

of the 24th International Conference on distributed Computing Systems
(ICDCS’04).

11

