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Abstract - We give an overview of signaling games and their relevant so-

lution concept, perfect Bayesian equilibrium. We introduce an example of

signaling games and analyze it.

1 Introduction

In the general framework of incomplete information or Bayesian games, it is
usually assumed that information is equally distributed among players; i.e. there
exists a commonly known probability distribution of the unknown parameter(s)
of the game. However, very often in the real life, we are confronted with games
in which players have asymmetric information about the unknown parameter
of the game; i.e. they have different probability distributions of the unknown
parameter. As an example, consider a game in which the unknown parameter of
the game can be measured by the players but with different degrees of accuracy.
Those players that have access to more accurate methods of measurement are
definitely in an advantageous position.

In extreme cases of asymmetric information games, one player has complete
information about the unknown parameter of the game while others only know
it by a probability distribution. In these games, the information is completely
one-sided. The informed player, for instance, may be the only player in the
game who can have different types and while he knows his type, other do not
(e.g. a prospect job applicant knows if he has high or low skills for a job but
the employer does not) or the informed player may know something about the
state of the world that others do not (e.g. a car dealer knows the quality of the
cars he sells but buyers do not).

Because of such a total asymmetry of information in one-sided information
games, one naturally expects that in many circumstances, the uninformed player
may not be even willing to participate in the game. It is therefore common that
the informed player sends a signal to the uniformed player to help him decide his
action (e.g the job applicant sends a college certificate with a high or low level
of credibility to the employer, the car dealer announces different warranty plans
for his cars). This signal can be considered as the action of the informed player
and because “actions speaks louder than words”, the uninformed player now
has something to base his action on. This is the general structure of signaling

games.
It should be noted that even after receiving the signal from the informed
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player, the uninformed player still has many good reasons not to believe in full
credibility of such signals. In fact, the whole study of signaling games evolves
around the idea of what signals should be sent and how optimally one should
react to these signals. It is in this context that deception can be formally
defined. Deception strategies are those ones which lead an opponent into a
disadvantageous position by a deliberate misrepresentation of the truth.

In Section 2, we define a signaling game and an appropriate solution concept
called perfect Bayesian equilibrium. The formal presentation of signaling games
in this section is mainly adopted from Chapter 8 of [1]. An interested reader
can also refer to Chapter 8 of our textbook [2] or Chapter 24 of [3] for some
insightful discussions. In Section 3, we introduce an example of signaling games
and analyze it. The game introduced in this section is taken from [4]. However,
we generalize some of the results given there and study the game as a signaling
game whereas in the original paper, only Nash equilibria are found. Finally, in
Section 4, we give some concluding remarks and directions for future research.

It should be also pointed out that in this brief introduction, we only focus on
single-stage signaling games where players only act once. Although the literature
is somewhat scattered, multi-stage, repeated and stochastic signaling and one-
sided information games have also been studied. Of special notes are [5] and [6].

2 Definition and Solution Concept

Figure 1 illustrates the structure of a one-stage signaling game. Player 1 has
private information about his type θ in Θ and chooses action (signal) s in S.
Player 2 observes s and chooses b in B. Before the game begins, it is common
knowledge that player 2 has prior beliefs p(·) about player 1’s type. After
observing s, player 2 updates his beliefs about θ according to Bayes’ rule and
base his choice of b on the posterior distribution µ(·|s) over Θ. A strategy
for player 1 prescribes a probability distribution σ1(·|θ) over actions s for each
type θ. A strategy for player 2 prescribes a probability distribution σ2(·|s) over
actions b for each action s. The expected payoff for player 1 with type θ and
strategy σ1(·|θ) when player 2 plays σ2(·|s) is

u1(σ1, σ2, θ) =
∑

s

∑

b

σ1(s|θ)σ1(b|s)u1(s, b, θ), (1)

and the expected payoff for player 2 conditional on s when he uses strategy
σ2(·|s) and posterior belief µ(·|s) can be computed as follows

u2(s, σ2, µ) =
∑

θ

µ(θ|s)u2(s, σ2(·|s), θ)

=
∑

θ

∑

b

µ(θ|s)σ2(b|s)u2(s, b, θ).
(2)

Figure 1 and the discussion above show that a signaling game can be modeled
as an imperfect information extensive form game with Bayesian inference. It is
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u1(s1, b1, θ1)

Figure 1: Model of a one-stage signaling game.

therefore natural to expect a solution concept for this game combines the ideas
of subgame perfection, Bayes-Nash equilibrium and Bayesian inference.
Definition 1. A perfect Bayesian equilibrium of a signaling game is a strategy
profile σ∗ = (σ∗

1
, σ∗

2
) and posterior beliefs µ(·|s) such that

∀ θ, σ∗

1
∈ argmax

σ1

u1(σ1, σ
∗

2
, θ), (3)

∀ s, σ∗

2
∈ argmax

σ2

∑

θ

µ(θ|s)u2(s, σ2, θ) (4)

µ(θ|s) =
p(θ)σ∗

1
(s|θ)∑

θ′ p(θ′)σ∗

1
(s|θ′)

(5)

In Definition 1, equation (4) ensures that σ∗

2
is the Bayes-Nash equilibrium of

the subgames of player 2. Equation (3) ensures that σ∗ is the Nash equilibrium
of the subgames of each type of player 1. Equation (5) determines how posterior
beliefs are obtained. There is one subtlety here and that is we have assumed∑

θ′ p(θ′)σ∗

1
(a1|θ

′) > 0. This assumption holds if player 1 plays actions consis-
tent with his equilibrium. If player 1 plays any action that is not in the support
of σ∗

1
, it is a common practice to assign an arbitrary posterior distribution for

player 2’s beliefs of player 1’s type.
A signaling game may have different perfect Bayesian equilibria. In a sep-

arating equilibrium, player 1 sends different signals for each of his types. In
other words, he completely reveals his type to player 2. In a pooling equilib-

rium, player 1 sends the same signal for all his types. In this case he does not
reveal any new information to player 2 by sending his signals. There can also
be hybrid or semi-separating equilibria in which player 1 randomizes between
pooling and separating. It is the structure of the game that determines what
types of equilibria exist. In strictly competitive settings, the informed player
may want to confuse the uninformed player as much as he can so he may play a
pooling strategy. In a less competitive setting, the informed player may want to
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convey as much information as he can to the uninformed player and therefore
he plays a separating strategy.

3 An Example of a Signaling Game

Consider the following game. There are n items and two boxes. Let assume n
is an odd number. Player 1 places x number of items in box number 1 and the
rest of the items in box number 2. Player 2 picks one box and the items inside
it become his. Player 1 takes the items in the other box. The appreciation of
players for the number of items they own, f(i), is a strictly increasing function
but not necessarily linear. What are the optimal strategies for each player?

Without loss of generality, we can scale f(i) such that f(0) = 0 and f(n) = 1.
Let denote the action of player 1 by θi where i is between 0 and n and reflects
the number of items, player 1 puts in box 1. Let denote the action of player 2
by bj where j is 1 or 2 and indicates the box player 2 picks. The matrix of this
game can then be shown as

θ0 θ1 · · · θn−1 θn

b1 1 ← f(n− 1) ← · · · ← f(1) ← 0
↓ ↑

b2 0 → f(1) → · · · → f(n− 1) → 1

The matrix cells represent the payoff of player 1. We note that this is a constant-
sum game and therefore the payoff of player 1 is 1 minus the payoff player 2 at
each entry. It is obvious that the game does not have any Nash equilibrium in
pure strategies. In fact, by any counter clock-wise move, one player can increase
his payoff as shown in the game matrix. However, since the game is constant-
sum, the minmax theorem tells us that the game should have a unique value and
any strategy that obtains this value is a Nash equilibrium in mixed strategies.
The special structure of the game matrix allows us to quickly find this value.
We plot each column expected payoff of player 1 when player 2 randomizes
between b1 and b2 with probability q assigned to b1. For each pair of columns i
and n + 1− i, the minimum value of player 1’s best response occurs at q = 1/2.
Therefore the global minimum also occurs at this point and the optimal strategy
for player 2 as a minimizer is (1/2, 1/2). Player 1 must select a pair of column
actions that maximizes his payoff at q = 1/2. Hence he must randomize between
columns i∗ and n + 1− i∗ for which f(i∗) + f(n + 1− i∗) > f(i) + f(n + 1− i)
for all i’s. This strategy means if, for instance, the items are a collection of
stamps and player 1 truly prefers to have all or none of them, then he should
only randomize between these two choices.

We now extend this game to a signaling game. In the new game, player 1
still places a certain number of items in box 1 and the rest in box 2. However,
he also requires to partially open both boxes and show the content of the boxes
to player 2. We assume that the number of items that are revealed to player 2 is
always less than half of n. Otherwise the selection is easy for player 2. We also
assume if the box is not empty, at least one item is revealed and always unequal
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numbers of items are revealed. We ask again what the optimal strategies are
player 1 and player 2.

To keep it tractable, we assume n = 3. In the terminology of Section 2,
the types in this game are θ1 = (0, 3),θ2 = (1, 2), θ3 = (2, 1), and θ4 = (3, 0),
where the first digit indicates the number of items in box 1 and the second digit
indicates the number of items in box 2. Signals are s1 = (0, 1) and s2 = (1, 0),
where the first digit indicates the number of items which are revealed in box 1
and the second digit indicates the number of items that are revealed in box 2.
We assume the prior beliefs of player 2 for types of player 1 is (1/4,1/4,1/4,1/4).
Finding an equilibrium for this game then involves finding the following proba-
bilities:

σ∗

1
(s1|θ1) = 1 = p1 σ∗

1
(s2|θ1) = 0 = 1− p1

σ∗

1
(s1|θ2) = p2 σ∗

1
(s2|θ2) = 1− p2

σ∗

1
(s1|θ3) = p3 σ∗

1
(s2|θ3) = 1− p3

σ∗

1
(s1|θ4) = 0 = p4 σ∗

1
(s2|θ4) = 1 = 1− p4

σ∗

2
(b1|s1) = q1 σ∗

2
(b2|s1) = 1− q1

σ∗

2
(b1|s2) = q2 σ∗

2
(b2|s2) = 1− q2.

We note that when type is θ1 or θ4, it is not possible to randomize between
signals, therefore there remain 4 parameters (p2, p3, q1, q2) that must be assigned
to have an equilibrium. We next note that the belief update equations are as
follows

µ(θ1|s1) = 0 µ∗

1
(θ1|s2) =

1

3− p2 − p3

µ(θ2|s1) =
p2

1 + p2 + p3

µ(θ2|s2) =
1− p2

3− p2 − p3

µ(θ3|s1) =
p3

1 + p2 + p3

µ(θ3|s2) =
1− p3

3− p2 − p3

µ(θ4|s1) =
1

1 + p2 + p3

µ∗

1
(θ1|s2) = 0.

We next note that the immediate payoff for both players does not rely on the
signals sent. In other words, u1(si, b1, θk) = f(n + 1 − k) and u1(si, b2, θk) =
f(k − 1). Therefore player 1’s expected payoff does not directly rely on how
he personally randomizes his signals. Two reasonable choices, however, are to
pick p2 = p3 = 1 or p2 = p3 = 0. These choices give maximum uncertainty
on one side of posterior beliefs of player 2. For instance with the first choice,
the posterior beliefs of player 2 are µ(·|s1) = (0, 1/3, 1/3, 1/3) and µ(·|s2) =
(1, 0, 0, 0). As for player 2’s optimal strategy, he has to maximize his payoff
with respect to q1 and q2 for each signal and given values of p2 and p3. We
outline the steps for signal s1 and p2 = p3 = 1. Player 2’s expected payoff in
this case is
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u2(s1, σ2, µ) =

4∑

j=1

µ(θj |s1)[q1u2(s1, b1, θj) + (1− q1)u2(s1, b2, θj)

=
4∑

j=1

µ(θj |s1)[q1f(j − 1) + (1− q1)f(n− j + 1)

=
4∑

j=1

µ(θj |s1)q1(f(j − 1)− f(n− j + 1)) +
4∑

j=1

µ(θj |s1)f(n− j + 1).

(6)

The last line of equation (6) indicates that maximization with respect to q1 only
concerns with the first sum. If this sum is positive, then q1 = 1, if it is negative,
q1 = 0 and if it is zero, q1 can be chosen arbitrarily. We therefore expand the
first sum

4∑

j=1

µ(θj |s1)q1(f(j − 1)− f(n− j + 1)) =
p2

1 + p2 + p3

[f(1)− f(2)]

+
p3

1 + p2 + p3

[f(2)− f(1)]

+
1

1 + p2 + p3

[1− 0].

(7)

And since p2 = p3 = 1, the above sum is equal to 1/3 > 0. As a result, q1

should be one. This means if player 2 sees an item in box 1, he must select that
box and otherwise box 2.

4 Conclusion

We provided a brief overview of signaling games. We also investigated the set
of strategy solutions for one type of signaling games. In general, because of a
cycle, it is harder to find the equilibria of incomplete information extensive form
games than the equilibria of complete information extensive form games. One
cannot anymore just apply backward induction because the beliefs are updated
with the strategies and the strategies are optimal given the beliefs.

The example game provided here can be further investigated in several dif-
ferent directions. The whole set of equilibria can be found and the meaning of
each one is explored. The game can be further made complicated by considering
other non-uniform priors or assigning a charge to player 2 for partially observing
the boxes.
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