
An Introduction to Iterative Combinatorial

Auctions

Baharak Rastegari

Department of Computer Science

University of British Columbia

Vancouver, B.C, Canada V6T 1Z4

baharak@cs.ubc.ca

Abstract

Combinatorial auctions let bidders to express their preferences on bun-
dles of items and are necessary for optimal allocation of goods. Direct rev-
elation of bidders’s valuation on all combination of goods is exponential in
the number of goods, so its expensive and could be impossible. Iterative
combinatorial auctions (iterative CAs) are designed to resolve the prob-
lem of costly preference elicitation by repeatedly interacting with bidders
and collecting information from them, which might guide them through
preference elicitation process. This paper is an introduction on iterative
CAs. We describe the computational problems regarding the design space
of iterative CAs that are present in literature and also describe different
design models and approaches and their limitations and advantages.

Keywords: Iterative combinatorial auctions, Ascending auctions

1 Introduction

Combinatorial auctions (CAs) are those auctions in which bidders can place bids
on combinations of items, called packages (bundles), rather than just individual
items. CAs are necessary for optimal auction-bases solutions to resource allo-
cation problems with agents that have non-additive values for resources. There
might be economic relations between goods in an auction: the goods may be
(i) complements : value of a bundle is greater than the sum of the values of its
parts, or the opposite case (ii) substitutes. These relations could be ignored by
selling each item in a separate auction. CAs take the relations between goods
into consideration while allocating them, by letting bidders to more fully express
their preferences (e.g. by valuating bundles instead of only single items).

The most famous combinatorial auction is the combinatorial generalization
of the Vickery auction (GVA). Assuming the goal is to maximize the social
welfare, GVA guarantees truthful bidding and efficiency. However, despite these
attractive characteristics, GVA is abandoned in practice since it has several

1



potential weaknesses, (set aside the fact that determining the optimal allocation
is NP-complete): (i) GVA needs each bidder to valuate all different subset of
goods; this could be costly and complex or even impossible, (ii) it uses explicit
price discrimination in the sense that two bidders may pay different prices for
identical allocations, (iii) bidders’ true valuation will be revealed to everyone,
so bidders may fear that this information will be used by auctioneer to cheat
them or by other agents to disadvantage them in future transactions. There are
also several weaknesses from the point of view of seller, such as: (iv) possibility
of low (or zero) seller revenues, (vi) vulnerability to shill bidding and collusion.

These various defects of the Vickery auction have led to increased inter-
est in exploring alternative designs. Iterative combinatorial auctions (iterative
CAs) are designed to address the problem of costly preference elicitation that
arises due to hard valuation problem (weakness (i) in above) and the commu-
nication cost (between bidders and auctioneer). An iterative CA repeatedly
interacts with bidders and collect information from them. Information feedback
could support adaptive and focused elicitation. For example, an ascending price
auction maintains ask prices and allows bidders to revise bids as prices are dis-
covered. Significantly, it is often possible to determine an efficient allocation
without bidders reporting (or even determining) exact values for all bundles.

Although the central concern of iterative CA design is preference elicitation
problem, it has also other important benefits: (i) iterative CAs can help to
distribute the computation in an auction across bidders through the interactive
involvement of bidders in guiding the dynamics of the auction, and (ii) bidders
can verify and validate the outcome of an auction (which could be difficult in
case of VGA).

However, iterative CAs offer new opportunities to bidders for manipulation;
Therefore, they need to be carefully designed. Different works in literature tried
to design an iterative CA which is efficient (i.e. can find an optimal allocation)
or approximates the efficiency for a general or restricted class of CAs. Ascending
CAs are one the main families of iterative CAs. In an ascending auction, the
prices in the queries to the same bidder can only increase in time. iBundle by
Parkes et al.[5] and “Proxy Auction” by Ausubel et al.[6] are both examples of
Ascending CAs that are proved to find the optimal allocation for unrestricted
valuation.

The design space for iterative CAs is larger than for one-shot auctions, and
as we will discuss later in the paper, many problems should be solved and taken
care of during the design process, such as: “How to represent the information
from bidders’ valuations?”, “How to query bidders about their valuation in each
iteration?”, and “How to decide the termination of the process?”. Many works
in literature tried to characterize different aspects of iterative CAs, compare the
different potential answers to the above (and similar) questions, and find the
limitations and advantages of different models by analyzing and comparing them
to each other; Works by Nisan et al.[1, 2] and more generally the forthcoming
book “Combinatorial Auctions” [4] are among those.

2



2 Preliminaries

A combinatorial auction problem is defined as follows. Let G = {1, ..., m} denote
the set of items, I = {1, ..., n} denote the set of bidders (agents) and S ⊆ G
denote a bundle of items. Each bidder i has a valuation function vi : 2G → <+.
Usually, the goal is to select an allocation of goods to agents that maximizes
the social welfare function.

Valuation functions could be categorized into different classes: (i) sub-additive,
where the goods could be substitutes, so there exists two sets of goods S, T ⊆ G
s.t. v(S

⋃
T ) ≤ v(S) + v(T ), and (ii) super-additive, where the goods could

be complement, so there exists two sets of goods S, T ⊆ G s.t. v(S
⋃

T ) ≥
v(S) + v(T ).

Most of the models assume the following assumption to simplify the design
and analysis process of CAs: (i) private value: each bidder i knows its own
value vector, (ii) quasilinear utility without externalities : a bidder i has utility
ui(S, p) = vi(S) − p for bundle S at price p ≥ 0 and vi(∅) = 0, where valuation
function domain is just the set of goods that she wins, and (iii) monotonicity
(free disposal): vi(T ) ≥ vi(S) for all T ⊇ S, which means that goods have
non-negative value.

As we said, the goal is to maximize social welfare function, or more formally
to solve the following efficient combinatorial allocation problem (CAP):

maxS=(S1,...,Sn)

∑

i∈I

vi(Si)

s.t. Si

⋂
Sj = ∅, ∀i, j

Winner determination and Integer programming: the winner deter-
mination problem (WDP) is to find an efficient allocation, which is equivalent
to solving the above equation. WDP may be formulated as an integer program:

maxxi(S)

∑

S⊆G

∑

i∈I

xi(S)vi(S)

s.t.
∑

S⊆G

xi(S) ≤ 1, ∀i

∑

S⊆G,j∈S

∑

i∈I

xi(S) ≤ 1, ∀j

xi(S) ∈ {0, 1}, ∀i, S

The concept of equilibrium can be defined in the context of CAs as follows:

Definition 2.1 (Competitive Equilibrium): Prices, p, and allocation S∗

are in competitive equilibrium (CE) if allocation S∗ maximizes the payoff of
every bidder and the seller revenue given prices p. Allocation S∗ is said to be
supported by prices p in CE.

3



Theorem 2.1 (First welfare theorem): Allocation S∗ is supported in com-
petitive equilibrium if and only if S∗ is an efficient allocation.

Following the theorem, any auction that implements an efficient allocation
must determine CE prices, so many iterative CAs are designed to converge to
CE prices.

3 The Design Space for Iterative Combinatorial

Auctions

The design space for iterative CAs is larger than for one-shot auctions and, as it
mentioned in introduction, different features should be considered in designing
an iterative CA:

Timing issues: Iterative auctions may be continuous or discrete (round-
based); in the former, bids are allowed to be submitted at any time, while in the
latter, agents have an opportunity to revise their bids at any round. Continuous
auctions can promote faster propagation of feedback information to bidders and
help to quickly focus elicitation, but the winner-determination problem must be
resolved whenever a new bid is submitted and that could make them infeasible.

Information feedback: Information feedback about the state of an auc-
tion can include information about the bids submitted and also aggregate infor-
mation, such as price feedback and the current provisional allocation to guide
biding. Information hiding is also possible to avoid (or minimize) collusion or
other kinds of manipulation.

Bidding rules: Iterative auctions need to elicit information about bidders’
preferences. Most of the suggested iterative auctions proceed by maintaining
temporary prices for the bundles of items and repeatedly querying the bidders
as to their preferences between the bundles under the current set of prices. It
might then update the set of bundle prices according to the replies received.
More details on different types of queries can be found in Sec. 3.1

Termination conditions: Auctions may close at a fixed deadline, or al-
ternatively can have a rolling closure with the auction kept open while one or
more losing bidders continue to submit competitive bids.

Bidding languages: Auctions need to decide on a language for expressing
bids. One popular bidding language is exclusive-or (XOR), e.g. S1 XOR S2

indicates that an agent wants to buy at most one of S1 and S2 and not both of
them.

3.1 Queries

Most of the current iterative CAs access the bidders’s preferences by repeatedly
making some queries and ask them to reply. Auctioneer could even exactly
define the reply function and put constraints on how a reply should look like.

One of the common form of queries is the one in which the auctioneer pro-
vides ask prices to coordinate the bidding process. iBundle [5] is an example

4



of iterative CAs which uses ask price as a bid improvement rule (more details
about iBundle are in Sec. 4.1).

There are different types of queries that can be used by iterative auc-
tions, such as: Value query (“what is bundle S worth?”), marginal-value query,
indirect-utility query, and demand query [1].

A demand query specifies a price p(S) ∈ <+ for each bundle S in the
query. The reply of bidder i to the query is simply a bundle of items S ⊆ M
that maximizes vi(S) − p(s).

Nisan et al. [1] proved that if vi(S) (for all agent i and bundles S) can be
represented by t bits, then each of the above queries can be efficiently (i.e. in
time polynomial in n, m, and t) simulated by a sequence of demand queries with
item prices. In demand queries with item prices the auctioneer presents a
vector of item prices p1...pm; bidder i replies by some set S ∈ M that maximizes
vi(s) −

∑
i∈S pi.

3.1.1 Demand Queries

Usually two main restrictions on the types of allowed demand queries are con-
sidered:

Linear (Item-price) vs. Nonlinear (Bundle-price): In item-price auc-
tion, each item j ∈ G has a price pj and the price of a set S is defined as
P (S) =

∑
j∈S pj . An auction uses bundle-prices if the price of a bundle S is

not necessarily the sum of the prices of the items in S.

Anonymous vs. Non-anonymous: In anonymous auctions, the prices seen
by the bidders at any stage in the auction are the same. In non-anonymous
auctions, each bidder i has personalized prices denoted by pi(S) where it is
possible that pi(S) 6= pj(S) for bidder i 6= j.

3.1.2 Demand Queries and Linear Programming

Unfortunately, winner determination problem is NP-complete so it can’t be
solved in polynomial time. However, we might be able to approximate it or
solve it polynomially for some special classes of problems. In both cases he
following linear programming relaxation of the above formulation can be useful.
Primal:

maxxi(S),y(k)

∑

S⊆G

∑

i∈I

xi(S)vi(S)

s.t.
∑

S⊆G

xi(S) ≤ 1, ∀i

∑

i∈I

xi(S) ≤
∑

k∈K,S∈k

y(k), ∀S

∑
k ∈ Ky(k) ≤ 1

xi(S), y(k) ≥ 0, ∀i, S, k

5



Dual:

minp(i),p(S),π

∑

i∈I

p(i) + π

s.t. p(i) + p(S) ≥ vi(S), ∀i, S

π −
∑

S∈k

p(S) ≥ 0, ∀k

p(i), p(S), π ≥ 0, ∀i, S

Nisan et al.[1] showed that despite the exponential number of variables, this
linear program may be solved in polynomial time (in n, m and the number of
bits of precision t) using only demand queries with item prices.

It should be note that in general, an optimal solution to the linear program
can allocate fractional items to agents and may not be a feasible solution to the
Linear program (where bids are indivisible). But it could help approximating
the optimum, and might even find the integral (feasible) solutions for some
restricted classes of valuations.

4 Ascending Auctions

In an ascending auction, the prices in the queries to the same bidder can only
increase in time. One the main families of iterative CAs is ascending CAs.

Nisan et al.[2] characterized the power of four families of ascending auc-
tions with demand queries: (1) Anonymous item-price, (2) Non-anonymous
item-price, (3) Anonymous bundle-price, and (4) Non-anonymous bundle-price
ascending auctions.

They first proved that none of item-price ascending auctions (anonymous
or non-anonymous) are powerful enough to determine the optimal allocation
for all instances of different classes of valuations. They also proved that anony-
mous bundle-price ascending auctions achieve poor results in the worst-case (i.e.
there exists an instance of agents’ valuations such that this family of auctions
can not determine the optimal allocation for it). They showed that the power
of non-anonymous item-price and anonymous bundle-price ascending auctions
is incomparable. Based on their analyses, they concluded that the only family
from these four which has the potential to find the optimal allocation is non-
anonymous bundle-price ascending auctions. In fact, all the ascending auctions
in the literature that are proved to find the optimal allocation for unrestricted
valuations are in this family (e.g. iBundle by parkes et al.[5] and “Proxy Auc-
tion” by Ausubel et al.[6]).

4.1 iBundle: an Ascending Bundle-Price Auction

iBundle is the first iterative CA that is optimal for myopic utility-maximizing
agents that place best-response bids to prices (myopic in the sense that they

6



only consider the current round of the auction and play a best response to the
current ask prices and allocation in the auction).

iBundle uses XOR bidding language. An auctioneer set initial ask prices on
all bundles to zero. Then in each round, agents are asked to associate a bid
price pt

i(S) (agent i, round t ) on bundle S which must either be within ε, or
greater than, the ask price announced by the auctioneer. Agents may repeat
bids for bundles in the current allocation, but can bid at the same price if the
ask price has increased since the previous round. An agent can also bid ε below
the ask price for any bundle in any round but then it cannot place a higher bid
price for that bundle in the future.

The auctioneer solves a WDP in each round to compute an allocation of
bundles to agents that maximizes revenue, given prices (with respect to agents’
XOR bid constraints). The price on a bundle is increased when one or more
agents that do not receive a bundle in the current allocation bid at (or above)
the current ask price for a bundle. The price is increased to ε above the greatest
failed bid price and the auctioneer announces a new ask price in the new round
for all bundles that increase in price. Other bundles are implicity priced at least
as high as the greatest price of any bundle they contain.

Auctioneer introduces price discrimination based on agents’ bids, with dif-
ferent ask prices to different agents, when an agent submits bids that are not
safe. An agent’s bids are safe if the agent is allocated a bundle in the current
allocation or it doesn’t bid at or above the ask price for any pair of compatible
bundles S1, S2, such that S1

⋂
S2 = ∅. Auctioneer starts the price discrimina-

tion for agent i, whenever bids from agent i are not safe, by introducing a new
dummy item that is specific to that agent, Xi and concatenate it to all bids
from agent i from this round on.

The auction terminates when: all agents submit the same bids in two con-
secutive rounds, or all agents that bid receive a bundle.

Parkes et al.[5] proved that iBundle terminates with an allocation that is
within 3min{|G|, |I |}ε of the optimal solution, for myopic best-response agent
bidding strategies.

The auction is optimal as the bid increment, ε approaches zero. They proved
the above claim (optimality) with a novel connection to primal-dual optimiza-
tion theory. They showed that iBundle implements a primal-dual algorithm for
WDP and computes integral solutions to the primal when agents follow myopic
best-response bidding strategies.

From the computational complexity point of view, in iBundle the auctioneer
must solve a WD problem (which is NP-hard) in each round to maintain a
provisional allocation as agents bid. However, each WD problem in iBundle is
smaller than in the GVA, because agents bid for less bundles. A naive worst
case analysis gives O(BVmax/ε) rounds to terminate, where B is the total of
bundles with positive value over all agents and Vmax the maximum value for
any bundle. One might note that B could be huge or even of an exponential
order of |G| which adds another computation complexity to the problem.

The auctioneer can make a tradeoff between the efficiency and computational
cost, and reduce the number or rounds to termination by increasing the minimal

7



bid increment, ε. Further speed-ups are achieved through some tricks that are
explained in [5].

5 Other Design Approaches

In above we mostly focused on price-based approaches where an auctioneer
provides ask prices to coordinate the bidding process. There are also non price-
based approaches to iterative CA design which we briefly describe: (i) Decen-
tralized approaches: WDP is moved to the bidders, who are responsible for
submitting bids and also computing efficient allocations of items given prices,
(ii) Proxy auctions: proxy agents automatically submit bids through a pre-
determined bidding procedure [6], and (iii) Direct-elicitation approaches:
explicit queries are formulated by auctioneer and a bidder’s strategy determines
how to respond to these queries.

6 Summary and Future Works

Iterative combinatorial auctions address the problem of preference elicitation
in CAs which might be one of the biggest issue in applying CAs in real world.
Iterative CAs aims to adaptively elicit enough information about the bidders’s
preferences, often through price discovery, to find efficient allocations without
bidders reporting or even computing their exact valuations.

However, the design space for iterative CAs is larger than for one-shot auc-
tions and different features should be considered in the design process. This
work was an introduction to iterative CAs which tried to describe different is-
sues in iterative CAs design. It mainly focused on ascending auctions as one
the main families of iterative CAs, and described iBundle [5] as an example of
this family.

Many works have been done till now on designing iterative CAs, but there is
still a number of outstanding design problems which can serve as future works:

Most of the current iterative CAs ignored the potential complexity of repre-
senting bundle prices. They assume that a query can be represented somehow
(e.g. by XOR language) but side-stepped the fact that the representation of a
query might have exponential length. They usually do not take into count the
cost of representing queries when defining the cost of an iterative CA.

Current methods are mainly seek to find an efficient allocation with as little
information as possible, but what happens if this minimal information remains
too costly to provide? There is surely need for designing iterative CAs which
make the right tradeoff between the cost of information and efficient allocation.

Also as you can see in iBundle, current auctions for general valuations mostly
use XOR bidding languages which are not concise enough to be usable for many
real-world applications. So we need iterative CAs that support richer bidding
languages.

8



References

[1] Blumrosen, L., Nisan, N.: On the computational power of Iterative Auc-
tions I: Demand Queries. Part I of an extended abstract in EC 2005,
http://www.cs.huji.ac.il/ noam/iter.pdf

[2] Blumrosen, L., Nisan, N.: On the computational power of IA II: Ascending Auctions.
Part II of an extended abstract in EC 2005, http://www.cs.huji.ac.il/ noam/asc.pdf

[3] Parkes, D.C.: Combinatorial Auctions: Chapter 2 - Iterative Combinatorial Auctions.
MIT Press (2006)

[4] P. Cramton, Y. Shoham, and R. Steinberg (Editors). Combinatorial Auctions. MIT Press
(2006)

[5] Parkes, D.C., Ungar, L.H.: Iterative combinatorial auctions: theory and practice. In
Proc. 17th National Conference on Artificial Intelligence (AAAI-00) (2000) 74–81

[6] Ausubel, L.M., Milgrom, P.R.: Ascending auctions with package bidding. Frontiers of
Theoretical Economics 1:1 (2002)

9


