Jennifer Tillett Bounded Rationality in the Iterated Prisoner's Dilemma Supplement to address errors in LaTeX render

In Definitions:

Let π_i^G be the payoff for player i in game G. Fix a strategy σ_2 in the set of Player 2's strategies \sum_2^G . Let G^{∞} be the limit of the means game and G^{δ} be the discounted game. For G^{∞} : A strategy σ_1 is *optimal* if for every strategy $\sigma'_1 \in \sum_1^G$

$$\pi_1^{G^{\infty}}(\sigma_1, \sigma_2) - \pi_1^{G^{\infty}}(\sigma_1', \sigma_2) \ge 0.$$
 (1)

For G^{δ} : A strategy σ_1 is *optimal* if for every strategy $\sigma'_1 \in \sum_{1}^{G}$

$$\liminf_{\delta \to 1^{-}} (\pi_1^{G^{\delta}}(\sigma_1, \sigma_2) - \pi_1^{G^{\delta}}(\sigma_1', \sigma_2)) \ge 0.$$
(2)

A strategy is ϵ -optimal when 0 is replaced with $-\epsilon$ in the above equations. A strategy σ_1 is dominant if for every strategy σ_2 in \sum_{2}^{G} , σ_1 is optimal.

In Machine Learning:

- The learning rate λ decreases over time such that $\sum_{\lambda=0}^{t} \lambda = \infty$ and $\sum_{\lambda=0}^{t} \lambda^2 < \infty$.
- Each agent samples each of its actions infinitely often.
- The probability $P_t^i(a)$ of agent *i* choosing action *a* is nonzero.
- Each agent's exploration is exploitive. In other words, $\lim_{t\to\infty} P_t^i(X_t) = 0$, where X_t is a random variable denoting the event that some nonoptimal action was taken based on *i*'s estimated values at time *t*.