Reasoning Under Uncertainty: Marginal and Conditional Independence

CPSC 322 – Uncertainty 3

Textbook §6.2
Lecture Overview

1. Recap

2. Marginal Independence

3. Conditional Independence
Conditioning

- Probabilistic conditioning specifies how to revise beliefs based on new information.
- You build a probabilistic model taking all background information into account. This gives the prior probability.
- All other information must be conditioned on.
- If evidence e is all of the information obtained subsequently, the conditional probability $P(h|e)$ of h given e is the posterior probability of h.
Conditional Probability

The conditional probability of formula h given evidence e is

$$P(h|e) = \frac{P(h \land e)}{P(e)}$$

Chain rule:

$$P(f_1 \land f_2 \land \ldots \land f_n) = \prod_{i=1}^{n} P(f_i|f_1 \land \ldots \land f_{i-1})$$

Bayes’ theorem:

$$P(h|e) = \frac{P(e|h) \times P(h)}{P(e)}.$$
Lecture Overview

1 Recap

2 Marginal Independence

3 Conditional Independence
Definition (marginal independence)

Random variable X is **marginally independent** of random variable Y if, for all $x_i \in \text{dom}(X)$, $y_j \in \text{dom}(Y)$ and $y_k \in \text{dom}(Y)$,

\[
P(X = x_i | Y = y_j) = P(X = x_i | Y = y_k) = P(X = x_i).
\]

That is, knowledge of Y’s value doesn’t affect your belief in the value of X.

Examples of marginal independence

- The probability that the Canucks will win the Stanley Cup is independent of whether light l_1 is lit.
 - remember the diagnostic assistant domain—the picture will recur in a minute!
- Whether there is someone in a room is independent of whether a light l_2 is lit.
- Whether light l_1 is lit is not independent of the position of switch s_2.
Lecture Overview

1 Recap

2 Marginal Independence

3 Conditional Independence
Sometimes, two random variables might not be marginally independent. However, they can become independent after we observe some third variable.

Definition

Random variable X is **conditionally independent** of random variable Y given random variable Z if, for all $x_i \in \text{dom}(X)$, $y_j \in \text{dom}(Y)$, $y_k \in \text{dom}(Y)$ and $z_m \in \text{dom}(Z)$,

$$P(X = x_i | Y = y_j \land Z = z_m) = P(X = x_i | Y = y_k \land Z = z_m) = P(X = x_i | Z = z_m).$$

That is, knowledge of Y's value doesn't affect your belief in the value of X, given a value of Z.
Kevin separately phones two students, Alice and Bob.
To each, he tells the same number, $n_k \in \{1, \ldots, 10\}$.
Due to the noise in the phone, Alice and Bob each imperfectly (and independently) draw a conclusion about what number Kevin said.
Let the numbers Alice and Bob think they heard be n_a and n_b respectively.
Are n_a and n_b marginally independent?
Kevin separately phones two students, Alice and Bob.
To each, he tells the same number, \(n_k \in \{1, \ldots, 10\} \).
Due to the noise in the phone, Alice and Bob each imperfectly (and independently) draw a conclusion about what number Kevin said.

Let the numbers Alice and Bob think they heard be \(n_a \) and \(n_b \) respectively.

Are \(n_a \) and \(n_b \) marginally independent?
- No: we’d expect (e.g.) \(P(n_a = 1|n_b = 1) > P(n_a = 1) \).
Kevin separately phones two students, Alice and Bob.
To each, he tells the same number, $n_k \in \{1, \ldots, 10\}$.
Due to the noise in the phone, Alice and Bob each imperfectly (and independently) draw a conclusion about what number Kevin said.
Let the numbers Alice and Bob think they heard be n_a and n_b respectively.
Are n_a and n_b marginally independent?
- No: we’d expect (e.g.) $P(n_a = 1|n_b = 1) > P(n_a = 1)$.
Why are n_a and n_b conditionally independent given n_k?
Kevin separately phones two students, Alice and Bob.
To each, he tells the same number, $n_k \in \{1, \ldots, 10\}$.
Due to the noise in the phone, Alice and Bob each imperfectly (and independently) draw a conclusion about what number Kevin said.
Let the numbers Alice and Bob think they heard be n_a and n_b respectively.
Are n_a and n_b marginally independent?
No: we’d expect (e.g.) $P(n_a = 1|n_b = 1) > P(n_a = 1)$.
Why are n_a and n_b conditionally independent given n_k?
Because if we know the number that Kevin actually said, the two variables are no longer correlated.
e.g., $P(n_a = 1|n_b = 1, n_k = 2) = P(n_a = 1|n_k = 2)$
Example domain (diagnostic assistant)
More examples of conditional independence

- Whether light l_1 is lit is independent of the position of light switch s_2 given whether there is power in wire w_0.
 - Two random variables that are not marginally independent can still be conditionally independent.
- Every other variable may be independent of whether light l_1 is lit given whether there is power in wire w_0 and the status of light l_1 (if it’s ok, or if not, how it’s broken).
The probability that the Canucks will win the Stanley Cup is independent of whether light l_1 is lit given whether there is outside power.

sometimes, when two random variables are marginally independent, they’re also conditionally independent given a third variable.

But not always...

Let C_1 be the proposition that coin 1 is heads; let C_2 be the proposition that coin 2 is heads; let B be the proposition that coin 1 and coin 2 are both either heads or tails.

$P(C_1|C_2) = P(C_1)$: C_1 and C_2 are marginally independent.

But $P(C_1|C_2, B) \neq P(C_1|B)$: if I know both C_2 and B, I know C_1 exactly, but if I only know B I know nothing.

Hence C_1 and C_2 are not conditionally independent given B.