
Recap A∗ Search Optimality of A∗

Search: A∗

CPSC 322 – Search 5

Textbook §3.6

Search: A∗ CPSC 322 – Search 5, Slide 1



Recap A∗ Search Optimality of A∗

Lecture Overview

1 Recap

2 A∗ Search

3 Optimality of A∗

Search: A∗ CPSC 322 – Search 5, Slide 2



Recap A∗ Search Optimality of A∗

Search with Costs

Sometimes there are costs associated with arcs.

The cost of a path is the sum of the costs of its arcs.

In this setting we often don’t just want to find just any
solution

Instead, we usually want to find the solution that minimizes
cost

We call a search algorithm which always finds such a solution
optimal

Search: A∗ CPSC 322 – Search 5, Slide 3



Recap A∗ Search Optimality of A∗

Heuristic Search

Definition (search heuristic)

A search heuristic h(n) is an estimate of the cost of the shortest
path from node n to a goal node.

h can be extended to paths: h(〈n0, . . . , nk〉) = h(nk)
h(n) uses only readily obtainable information (that is easy to
compute) about a node.

Definition (admissible heuristic)

A search heuristic h(n) is admissible if it is never an overestimate
of the cost from n to a goal.

there is never a path from n to a goal that has path length
less than h(n).
another way of saying this: h(n) is a lower bound on the cost
of getting from n to the nearest goal.

Search: A∗ CPSC 322 – Search 5, Slide 4



Recap A∗ Search Optimality of A∗

How to Construct a Heuristic

Overall, a cost-minimizing search problem is a constrained
optimization problem

A relaxed version of the problem is a version of the problem
where one or more constraints have been dropped

It’s usually possible to identify constraints which, when
dropped, make the problem extremely easy to solve

Search: A∗ CPSC 322 – Search 5, Slide 5



Recap A∗ Search Optimality of A∗

Lecture Overview

1 Recap

2 A∗ Search

3 Optimality of A∗

Search: A∗ CPSC 322 – Search 5, Slide 6



Recap A∗ Search Optimality of A∗

A cool example

A∗ search applied to “infinite Mario”:

http://aigamedev.com/open/interviews/mario-ai/

http://www.doc.ic.ac.uk/~rb1006/projects:marioai

...Thanks to Phillip Mah!

Search: A∗ CPSC 322 – Search 5, Slide 7

http://aigamedev.com/open/interviews/mario-ai/
http://www.doc.ic.ac.uk/~rb1006/projects:marioai


Recap A∗ Search Optimality of A∗

A∗ Search

A∗ search uses both path costs and heuristic values

cost(p) is the cost of the path p.
h(p) estimates the cost from the end of p to a goal.

Let f(p) = cost(p) + h(p).

f(p) estimates the total path cost of going from a start node
to a goal via p.

start
path p−→ n︸ ︷︷ ︸

cost(p)

estimate−→ goal︸ ︷︷ ︸
h(p)︸ ︷︷ ︸

f(p)

A∗ treats the frontier as a priority queue ordered by f(p).

It always selects the node on the frontier with the lowest
estimated total distance.

Search: A∗ CPSC 322 – Search 5, Slide 8



Recap A∗ Search Optimality of A∗

A∗ Search

A∗ search uses both path costs and heuristic values

cost(p) is the cost of the path p.
h(p) estimates the cost from the end of p to a goal.

Let f(p) = cost(p) + h(p).

f(p) estimates the total path cost of going from a start node
to a goal via p.

start
path p−→ n︸ ︷︷ ︸

cost(p)

estimate−→ goal︸ ︷︷ ︸
h(p)︸ ︷︷ ︸

f(p)

A∗ treats the frontier as a priority queue ordered by f(p).

It always selects the node on the frontier with the lowest
estimated total distance.

Search: A∗ CPSC 322 – Search 5, Slide 8



Recap A∗ Search Optimality of A∗

A∗ Search

A∗ search uses both path costs and heuristic values

cost(p) is the cost of the path p.
h(p) estimates the cost from the end of p to a goal.

Let f(p) = cost(p) + h(p).

f(p) estimates the total path cost of going from a start node
to a goal via p.

start
path p−→ n︸ ︷︷ ︸

cost(p)

estimate−→ goal︸ ︷︷ ︸
h(p)︸ ︷︷ ︸

f(p)

A∗ treats the frontier as a priority queue ordered by f(p).

It always selects the node on the frontier with the lowest
estimated total distance.

Search: A∗ CPSC 322 – Search 5, Slide 8



Recap A∗ Search Optimality of A∗

A∗ Example

http://aispace.org/search/

simple tree graph

delivery robot (acyclic) graph

Search: A∗ CPSC 322 – Search 5, Slide 9

http://aispace.org/search/


Recap A∗ Search Optimality of A∗

Analysis of A∗

Let’s assume that arc costs are strictly positive.

Completeness:

yes.

Time complexity: O(bm)
the heuristic could be completely uninformative and the edge
costs could all be the same, meaning that A∗ does the same
thing as BFS

Space complexity: O(bm)
like BFS, A∗ maintains a frontier which grows with the size of
the tree

Optimality: yes.

Search: A∗ CPSC 322 – Search 5, Slide 10



Recap A∗ Search Optimality of A∗

Analysis of A∗

Let’s assume that arc costs are strictly positive.

Completeness: yes.

Time complexity:

O(bm)
the heuristic could be completely uninformative and the edge
costs could all be the same, meaning that A∗ does the same
thing as BFS

Space complexity: O(bm)
like BFS, A∗ maintains a frontier which grows with the size of
the tree

Optimality: yes.

Search: A∗ CPSC 322 – Search 5, Slide 10



Recap A∗ Search Optimality of A∗

Analysis of A∗

Let’s assume that arc costs are strictly positive.

Completeness: yes.

Time complexity: O(bm)
the heuristic could be completely uninformative and the edge
costs could all be the same, meaning that A∗ does the same
thing as BFS

Space complexity:

O(bm)
like BFS, A∗ maintains a frontier which grows with the size of
the tree

Optimality: yes.

Search: A∗ CPSC 322 – Search 5, Slide 10



Recap A∗ Search Optimality of A∗

Analysis of A∗

Let’s assume that arc costs are strictly positive.

Completeness: yes.

Time complexity: O(bm)
the heuristic could be completely uninformative and the edge
costs could all be the same, meaning that A∗ does the same
thing as BFS

Space complexity: O(bm)
like BFS, A∗ maintains a frontier which grows with the size of
the tree

Optimality:

yes.

Search: A∗ CPSC 322 – Search 5, Slide 10



Recap A∗ Search Optimality of A∗

Analysis of A∗

Let’s assume that arc costs are strictly positive.

Completeness: yes.

Time complexity: O(bm)
the heuristic could be completely uninformative and the edge
costs could all be the same, meaning that A∗ does the same
thing as BFS

Space complexity: O(bm)
like BFS, A∗ maintains a frontier which grows with the size of
the tree

Optimality: yes.

Search: A∗ CPSC 322 – Search 5, Slide 10



Recap A∗ Search Optimality of A∗

Lecture Overview

1 Recap

2 A∗ Search

3 Optimality of A∗

Search: A∗ CPSC 322 – Search 5, Slide 11



Recap A∗ Search Optimality of A∗

Optimality1 of A∗

If A∗ returns a solution, that solution is guaranteed to be optimal,
as long as

the branching factor is finite

arc costs are strictly positive

h(n) is an underestimate of the length of the shortest path
from n to a goal node, and is non-negative

1Some literature, and the textbook, uses the word “admissiblity” here.
Search: A∗ CPSC 322 – Search 5, Slide 12



Recap A∗ Search Optimality of A∗

Why is A∗ optimal?

Theorem

If A∗ selects a path p, p is the shortest (i.e., lowest-cost) path.

Assume for contradiction that some other path p′ is actually
the shortest path to a goal

Consider the moment just before p is chosen from the frontier.
Some part of path p′ will also be on the frontier; let’s call this
partial path p′′.

Because p was expanded before p′′, f(p) ≤ f(p′′).

Because p is a goal, h(p) = 0. Thus
cost(p) ≤ cost(p′′) + h(p′′).
Because h is admissible, cost(p′′) + h(p′′) ≤ cost(p′) for any
path p′ to a goal that extends p′′

Thus cost(p) ≤ cost(p′) for any other path p′ to a goal. This
contradicts our assumption that p′ is the shortest path.

Search: A∗ CPSC 322 – Search 5, Slide 13


	Recap
	A* Search
	Optimality of A*

