CSPs: Arc Consistency

CPSC 322 – CSPs 3

Textbook §4.5
Lecture Overview

1. Recap
2. Consistency
3. Arc Consistency
Constraint Satisfaction Problems: Definition

Definition
A constraint satisfaction problem consists of:
- a set of variables
- a domain for each variable
- a set of constraints

Definition
A model of a CSP is an assignment of values to variables that satisfies all of the constraints.
CSPs as Search Problems

We map CSPs into search problems:

- **nodes**: assignments of values to a subset of the variables
- **neighbours** of a node: nodes in which values are assigned to one additional variable
- **start node**: the empty assignment (no variables assigned values)
- **goal node**: a node which assigns a value to each variable, and satisfies all of the constraints

Note: the path to a goal node is not important
Lecture Overview

1 Recap

2 Consistency

3 Arc Consistency
Consistency Algorithms

- **Idea:** prune the domains as much as possible before selecting values from them.

Definition
A variable is domain consistent if no value of the domain of the node is ruled impossible by any of the constraints.

- **Example:** \(\text{dom}(B) = \{1, 2, 3, 4\} \) isn't domain consistent if we have the constraint \(B \neq 3 \).
Constraint Networks

- Domain consistency only talked about constraints involving a single variable
 - what can we say about constraints involving multiple variables?

Definition

A constraint network is defined by a graph, with
- one node for every variable
- one node for every constraint
and undirected edges running between variable nodes and constraint nodes whenever a given variable is involved in a given constraint.

- When all of the constraints are binary, constraint nodes are not necessary: we can drop constraint nodes and use edges to indicate that a constraint holds between a pair of variables.
- why can’t we do the same with general k-ary constraints?
Recall:

- Variables: A, B, C
- Domains: \{1, 2, 3, 4\}
- Constraints: $A < B, B < C$
Lecture Overview

1 Recap

2 Consistency

3 Arc Consistency
Arc Consistency

Definition

An arc $\langle X, r(X, \bar{Y}) \rangle$ is arc consistent if for each value of X in $\text{dom}(X)$ there is some value \bar{Y} in $\text{dom}(\bar{Y})$ such that $r(X, \bar{Y})$ is satisfied.

- In symbols, $\forall X \in \text{dom}(X), \exists \bar{Y} \in \text{dom}(\bar{Y})$ such that $r(X, \bar{Y})$ is satisfied.
- A network is arc consistent if all its arcs are arc consistent.
- If an arc $\langle X, \bar{Y} \rangle$ is not arc consistent, all values of X in $\text{dom}(X)$ for which there is no corresponding value in $\text{dom}(\bar{Y})$ may be deleted from $\text{dom}(X)$ to make the arc $\langle X, \bar{Y} \rangle$ consistent.
 - This removal can never rule out any models (do you see why?)

CSPs: Arc Consistency

Recap

Consistency

Arc Consistency

CPSC 322 – CSPs 3, Slide 10
Arc Consistency Outcomes

- Three possible outcomes (when all arcs are arc consistent):
 - One domain is empty \Rightarrow no solution
 - Each domain has a single value \Rightarrow unique solution
 - Some domains have more than one value \Rightarrow may or may not be a solution
 - in this case, arc consistency isn’t enough to solve the problem: we need to perform search
Arc Consistency Algorithm

- Consider the arcs in turn making each arc consistent.
 - An arc $\langle X, r(X, \bar{Y}) \rangle$ needs to be revisited if the domain of Y is reduced.
- Regardless of the order in which arcs are considered, we will terminate with the same result: an arc consistent network.
- Worst-case complexity of this procedure:
 - let the max size of a variable domain be d
 - let the number of constraints be e
 - complexity is $O(ed^3)$
- Some special cases are faster
 - e.g., if the constraint graph is a tree, arc consistency is $O(ed)$
Arc Consistency Algorithm (binary constraints case)

procedure AC(V, dom, R)

Inputs
V: a set of variables
dom: a function such that dom(X) is the domain of variable X
R: set of relations to be satisfied

Output
arc consistent domains for each variable

Local
DX is a set of values for each variable X

for each variable X do
 DX ← dom(X)
end for each

TDA ← {(X, r) | r ∈ R is a constraint that involves X}

while TDA ≠ {} do
 select ⟨X, r⟩ ∈ TDA;
 TDA ← TDA − {(X, r)};
 NDX ← {x | x ∈ DX and there is y ∈ DY such that r(x, y)};
 if NDX ≠ DX then
 TDA ← TDA ∪ {(Z, r') | r' ≠ r and r' involves X and Z ≠ X};
 DX ← NDX;
 end if
end while

return {DX : X is a variable}

end procedure
Adding edges back to \(TDA \) (binary constraints case)

- When we change the domain of a variable \(X \) in the course of making an arc \(\langle X, r \rangle \) arc consistent, we add every arc \(\langle Z, r' \rangle \) where \(r' \) involves \(X \) and:
 - \(r \neq r' \)
 - \(Z \neq X \)

- Thus we don’t add back the same arc:
 - This makes sense—it’s definitely arc consistent.
Adding edges back to \textit{TDA} (binary constraints case)

When we change the domain of a variable X in the course of making an arc $\langle X, r \rangle$ arc consistent, we add every arc $\langle Z, r' \rangle$ where r' involves X and:

- $r \neq r'$
- $Z \neq X$

We don’t add back other arcs that involve the same variable X.

- We’ve just \textit{reduced} the domain of X
- If an arc $\langle X, r \rangle$ was arc consistent before, it will still be arc consistent
 - in the “for all” we’ll just check fewer values
Adding edges back to TDA (binary constraints case)

- When we change the domain of a variable X in the course of making an arc $\langle X, r \rangle$ arc consistent, we add every arc $\langle Z, r' \rangle$ where r' involves X and:
 - $r \neq r'$
 - $Z \neq X$

- We don’t add back other arcs that involve the same constraint and a different variable:
 - Imagine that such an arc—involving variable Y—had been arc consistent before, but was no longer arc consistent after X’s domain was reduced.
 - This means that some value in Y’s domain could satisfy r only when X took one of the dropped values
 - But we dropped these values precisely because there were no values of Y that allowed r to be satisfied when X takes these values—contradiction!
Arc Consistency Example

- $dom(A) = \{1, 2, 3, 4\}; \ dom(B) = \{1, 2, 3, 4\}; \ dom(C) = \{1, 2, 3, 4\}$
- Suppose you first select the arc $\langle A, A < B \rangle$.
 - Remove $A = 4$ from the domain of A.
 - Add nothing to TDA.
- Suppose that $\langle B, B < C \rangle$ is selected next.
 - Prune the value 4 from the domain of B.
 - Add $\langle A, A < B \rangle$ back into the TDA set (why?)
- Suppose that $\langle B, A < B \rangle$ is selected next.
 - Prune 1 from the domain of B.
 - Add no element to TDA (why?)
- Suppose the arc $\langle A, A < B \rangle$ is selected next
 - The value $A = 3$ can be pruned from the domain of A.
 - Add no element to TDA (why?)
- Select $\langle C, B < C \rangle$ next.
 - Remove 1 and 2 from the domain of C.
 - Add $\langle B, B < C \rangle$ back into the TDA set

The other two edges are arc consistent, so the algorithm terminates with $\ dom(A) = \{1, 2\}, \ dom(B) = \{2, 3\}, \ dom(C) = \{3, 4\}$.