CSP Introduction

CPSC 322 – CSPs 1

Textbook §4.0 – 4.2
Lecture Overview

1. Recap
2. Other Pruning
3. Backwards Search
4. Dynamic Programming
5. Variables
6. Constraints
Branch-and-Bound Search Algorithm

- Follow exactly the same search path as **depth-first search**
 - treat the frontier as a stack: expand the most-recently added node first
 - the order in which neighbors are expanded can be governed by some arbitrary node-ordering heuristic
- Keep track of a **lower bound** and **upper bound** on solution cost at each node
 - lower bound: \(LB(n) = cost(n) + h(n) \)
 - upper bound: \(UB = cost(n') \), where \(n' \) is the best solution found so far.
 - if no solution has been found yet, set the upper bound to \(\infty \).
- When a node \(n \) is selected for expansion:
 - if \(LB(n) \geq UB \), remove \(n \) from frontier without expanding it
 - this is called “pruning the search tree” (really!)
 - else expand \(n \), adding all of its neighbours to the frontier
The main problem with A^* is that it uses exponential space. Branch and bound was one way around this problem. Two others are:

- Iterative deepening
- Memory-bounded A^*
Lecture Overview

1. Recap
2. Other Pruning
3. Backwards Search
4. Dynamic Programming
5. Variables
6. Constraints
Non-heuristic pruning

What can we prune besides nodes that are ruled out by our heuristic?

- Cycles
- Multiple paths to the same node
You can prune a path that ends in a node already on the path. This pruning cannot remove an optimal solution.

Using depth-first methods, with the graph explicitly stored, this can be done in constant time.

For other methods, the cost is linear in path length.
Multiple-Path Pruning

- You can prune a path to node n that you have already found a path to.
- Multiple-path pruning subsumes a cycle check.
- This entails storing all nodes you have found paths to.
Multiple-Path Pruning & Optimal Solutions

Problem: what if a subsequent path to n is shorter than the first path to n?

- You can remove all paths from the frontier that use the longer path.
- You can change the initial segment of the paths on the frontier to use the shorter path.
- You can ensure this doesn’t happen. You make sure that the shortest path to a node is found first.
 - Heuristic function h satisfies the monotone restriction if $|h(m) - h(n)| \leq d(m, n)$ for every arc $\langle m, n \rangle$.
 - If h satisfies the monotone restriction, A^* with multiple path pruning always finds the shortest path to every node
 - otherwise, we have this guarantee only for goals
Lecture Overview

1. Recap
2. Other Pruning
3. Backwards Search
4. Dynamic Programming
5. Variables
6. Constraints
The definition of searching is symmetric: find path from start nodes to goal node or from goal node to start nodes.

- Of course, this presumes an explicit goal node, not a goal test.
- Also, when the graph is dynamically constructed, it can sometimes be impossible to construct the backwards graph.

- **Forward branching factor**: number of arcs out of a node.
- **Backward branching factor**: number of arcs into a node.
- **Search complexity is** b^n. Should use forward search if forward branching factor is less than backward branching factor, and vice versa.
Bidirectional Search

- You can search backward from the goal and forward from the start simultaneously.
- This wins because $2b^k/2 \ll b^k$. This can result in an exponential saving in time and space.
 - The main problem is making sure the frontiers meet.
 - This is often used with one breadth-first method that builds a set of locations that can lead to the goal. In the other direction another method can be used to find a path to these interesting locations.
Lecture Overview

1. Recap
2. Other Pruning
3. Backwards Search
4. Dynamic Programming
5. Variables
6. Constraints
Dynamic Programming

Idea: for statically stored graphs, build a table of $dist(n)$ the actual distance of the shortest path from node n to a goal.

Initialize $dist(n) = \infty$ for each node n

Then repeatedly, until no $dist(n)$ value changes, set each $dist(n)$ value to the smallest (neighboring $dist(n')$ value + cost of reaching n' from n):

$$
\begin{align*}
\text{dist}(n) &= \begin{cases}
0 & \text{if } is_goal(n), \\
\min_{\langle n, m \rangle \in A}(|\langle n, m \rangle| + \text{dist}(m)) & \text{otherwise.}
\end{cases}
\end{align*}
$$
The main problem is that you need enough space to store the graph.

Complexity: polynomial in the size of the graph.
- but so is DFS (in fact, it’s linear)
- the gain is when there are lots of nested cycles
Lecture Overview

1. Recap
2. Other Pruning
3. Backwards Search
4. Dynamic Programming
5. Variables
6. Constraints
Recall that we defined the state of the world as an assignment of values to a set of (one or more) variables.

- Variable: a synonym for feature
- We denote variables using capital letters
- Each variable V has a domain $dom(V)$ of possible values

Variables can be of several main kinds:

- **Boolean**: $|dom(V)| = 2$
- **Finite**: the domain contains a finite number of values
- **Infinite but Discrete**: the domain is countably infinite
- **Continuous**: e.g., real numbers between 0 and 1

We’ll call the set of states that are induced by a set of variables the set of possible worlds.
Examples

- **Crossword Puzzle:**
 - variables are words that have to be filled in
 - domains are English words of the correct length
 - possible worlds: all ways of assigning words
Examples

- **Crossword Puzzle:**
 - variables are words that have to be filled in
 - domains are English words of the correct length
 - possible worlds: all ways of assigning words

- **Crossword 2:**
 - variables are cells (individual squares)
 - domains are letters of the alphabet
 - possible worlds: all ways of assigning letters to cells
Examples

- **Crossword Puzzle:**
 - variables are words that have to be filled in
 - domains are English words of the correct length
 - possible worlds: all ways of assigning words

- **Crossword 2:**
 - variables are cells (individual squares)
 - domains are letters of the alphabet
 - possible worlds: all ways of assigning letters to cells

- **Sudoku**
 - variables are cells
 - domains are numbers between 1 and 9
 - possible worlds: all ways of assigning numbers to cells
More Examples

- **Scheduling Problem:**
 - variables are different tasks that need to be scheduled (e.g., course in a university; job in a machine shop)
 - domains are the different combinations of times and locations for each task (e.g., time/room for course; time/machine for job)
 - possible worlds: time/location assignments for each task
More Examples

- **Scheduling Problem:**
 - variables are different tasks that need to be scheduled (e.g., course in a university; job in a machine shop)
 - domains are the different combinations of times and locations for each task (e.g., time/room for course; time/machine for job)
 - possible worlds: time/location assignments for each task

- **n-Queens problem**
 - variable: location of a queen on a chess board
 - there are n of them in total, hence the name
 - domains: grid coordinates
 - possible worlds: locations of all queens
Lecture Overview

1. Recap
2. Other Pruning
3. Backwards Search
4. Dynamic Programming
5. Variables
6. Constraints
Constraints

Constraints are restrictions on the values that one or more variables can take

- **Unary constraint**: restriction involving a single variable
 - of course, we could also achieve the same thing by using a smaller domain in the first place
- **k-ary constraint**: restriction involving the domains of k different variables
 - it turns out that k-ary constraints can always be represented as binary constraints, so we’ll often talk about this case

Constraints can be specified by

- giving a list of valid domain values for each variable participating in the constraint
- giving a function that returns true when given values for each variable which satisfy the constraint

- A possible world satisfies a set of constraints if the set of variables involved in each constraint take values that are consistent with that constraint
Examples

- **Crossword Puzzle:**
 - variables are words that have to be filled in
 - domains are valid English words
 - constraints: words have the same letters at points where they intersect

- **Crossword 2:**
 - variables are cells (individual squares)
 - domains are letters of the alphabet
 - constraints: sequences of letters form valid English words

- **Sudoku**
 - variables are cells
 - domains are numbers between 1 and 9
 - constraints: rows, columns, boxes contain all different numbers
More Examples

- **Scheduling Problem:**
 - variables are different tasks that need to be scheduled (e.g., course in a university; job in a machine shop)
 - domains are the different combinations of times and locations for each task (e.g., time/room for course; time/machine for job)
 - constraints: tasks can’t be scheduled in the same location at the same time; certain tasks can’t be scheduled in different locations at the same time; some tasks must come earlier than others; etc.

- **n-Queens problem**
 - variable: location of a queen on a chess board
 - domains: grid coordinates
 - constraints: no queen can attack another