Search: Advanced Topics and Conclusion

CPSC 322 – Search 6

Textbook §3.6
Lecture Overview

1 Recap
2 Branch & Bound
3 A^* Tricks
4 Other Pruning
5 Backwards Search
A* is optimal

Theorem

If A selects a path p, p is the shortest (i.e., lowest-cost) path.*

- Assume for contradiction that some other path p' is actually the shortest path to a goal.
- Consider the moment just before p is chosen from the frontier. Some part of path p' will also be on the frontier; let’s call this partial path p''.
- Because p was expanded before p'', $f(p) \leq f(p'')$.
- Because p is a goal, $h(p) = 0$. Thus $cost(p) \leq cost(p'') + h(p'')$.
- Because h is admissible, $cost(p'') + h(p'') \leq cost(p')$ for any path p' to a goal that extends p''.
- Thus $cost(p) \leq cost(p')$ for any other path p' to a goal. This contradicts our assumption that p' is the shortest path.
A* is optimally efficient

- We can prove something even stronger about A^*: in a sense (given the particular heuristic that is available) no search algorithm could do better!

- **Optimal Efficiency**: Among all optimal algorithms that start from the same start node and use the same heuristic h, A^* expands the minimal number of paths.
 - problem: A^* could be unlucky about how it breaks ties.
 - So let’s define optimal efficiency as expanding the minimal number of paths p for which $f(p) \neq f^*$, where f^* is the cost of the shortest path.
A* is optimally efficient

Theorem

A* is optimally efficient.

Let f^* be the cost of the shortest path to a goal. Consider any algorithm A' which has the same start node as A^*, uses the same heuristic and fails to expand some path p' expanded by A^* for which $\text{cost}(p') + h(p') < f^*$. Assume that A' is optimal.

Consider a different search problem which is identical to the original and on which h returns the same estimate for each path, except that p' has a child path p'' which is a goal node, and the true cost of the path to p'' is $f(p')$.

- that is, the edge from p' to p'' has a cost of $h(p')$: the heuristic is exactly right about the cost of getting from p' to a goal.

- A' would behave identically on this new problem.

 - The only difference between the new problem and the original problem is beyond path p', which A' does not expand.

- Cost of the path to p'' is lower than cost of the path found by A'.

- This violates our assumption that A' is optimal.
Lecture Overview

1 Recap
2 Branch & Bound
3 A* Tricks
4 Other Pruning
5 Backwards Search

Search: Advanced Topics and Conclusion
Branch-and-Bound Search

- A search strategy often not covered in AI, but widely used in practice
- Uses a heuristic function: like A^*, can avoid expanding some unnecessary paths
- Depth-first: modest memory demands
 - in fact, some people see “branch and bound” as a broad family that includes A^*
 - these people would use the term “depth-first branch and bound”
Branch-and-Bound Search Algorithm

- Follow exactly the same search path as **depth-first search**
 - treat the frontier as a stack: expand the most-recently added path first
 - the order in which neighbors are expanded can be governed by some arbitrary node-ordering heuristic
- Keep track of a **lower bound** and **upper bound** on solution cost at each path
 - **lower bound**: \(LB(p) = cost(p) + h(p) \)
 - **upper bound**: \(UB = cost(p') \), where \(p' \) is the best solution found so far.
 - if no solution has been found yet, set the upper bound to \(\infty \).
- When a path \(p \) is selected for expansion:
 - if \(LB(p) \geq UB \), remove \(p \) from frontier without expanding it
 - this is called “pruning the search tree” (really!)
 - else expand \(p \), adding all of its neighbours to the frontier
Branch and Bound Example

- http://aispace.org/search/
- Example: Load from URL http://cs.ubc.ca/~kevinlb/teaching/cs322/BnBSearchDemo.xml
Branch-and-Bound Analysis

- **Completeness:** no, for the same reasons that DFS isn’t complete
 - however, for many problems of interest there are no infinite paths and no cycles
 - hence, for many problems B&B is complete

- **Time complexity:** $O(b^m)$

- **Space complexity:** $O(bm)$
 - Branch & Bound has the same space complexity as DFS
 - this is a big improvement over A^*!

- **Optimality:** yes.
Lecture Overview

1. Recap
2. Branch & Bound
3. *Tricks
4. Other Pruning
5. Backwards Search
The main problem with A^* is that it uses exponential space. Branch and bound was one way around this problem. Are there others?

- Iterative deepening
- Memory-bounded A^*
Iterative Deepening

- B & B can still get stuck in cycles
- Search depth-first, but to a fixed depth
 - set a maximum path length
 - augment branch and bound algorithm so that it also prunes paths that exceed the maximum length
 - if you don’t find a solution, increase the maximum path length and try again
- Counter-intuitively, the asymptotic complexity is not changed, even though we visit paths multiple times
Memory-bounded A^*

- Iterative deepening and B & B use a tiny amount of memory
- what if we’ve got more memory to use?
- keep as much of the fringe in memory as we can
- if we have to delete something:
 - delete the oldest paths
 - “back them up” to a common ancestor
Lecture Overview

1. Recap
2. Branch & Bound
3. A^* Tricks
4. Other Pruning
5. Backwards Search
Non-heuristic pruning

What can we prune besides nodes that are ruled out by our heuristic?

- Cycles
- Multiple paths to the same node
You can prune a path that ends in a node already on the path. This pruning cannot remove an optimal solution.

Using depth-first methods, with the graph explicitly stored, this can be done in constant time.

For other methods, the cost is linear in path length.
Multiple-Path Pruning

- You can prune a path to node \(n \) that you have already found a path to.
- Multiple-path pruning subsumes a cycle check.
- This entails storing all nodes you have found paths to.
Multiple-Path Pruning & Optimal Solutions

Problem: what if a subsequent path to \(n \) is shorter than the first path to \(n \)?

- You can remove all paths from the frontier that use the longer path.
- You can change the initial segment of the paths on the frontier to use the shorter path.
- You can ensure this doesn’t happen. You make sure that the shortest path to a node is found first.

 - Heuristic function \(h \) satisfies the **monotone restriction** if \(|h(m) - h(n)| \leq d(m, n) \) for every arc \(\langle m, n \rangle \).
 - If \(h \) satisfies the monotone restriction, \(A^* \) with multiple path pruning always finds the shortest path to every node
 - otherwise, we have this guarantee only for goals
Lecture Overview

1. Recap
2. Branch & Bound
3. A* Tricks
4. Other Pruning
5. Backwards Search
Direction of Search

- The definition of searching is symmetric: find path from start nodes to goal node or from goal node to start nodes.
 - Of course, this presumes an explicit goal node, not a goal test.
 - Also, when the graph is dynamically constructed, it can sometimes be impossible to construct the backwards graph.

- **Forward branching factor**: number of arcs out of a node.
- **Backward branching factor**: number of arcs into a node.
- **Search complexity is** b^n. Should use forward search if forward branching factor is less than backward branching factor, and vice versa.
Bidirectional Search

- You can search backward from the goal and forward from the start simultaneously.
- This wins because \(2b^{k/2} \ll b^k \). This can result in an exponential saving in time and space.
 - The main problem is making sure the frontiers meet.
 - This is often used with one breadth-first method that builds a set of locations that can lead to the goal. In the other direction another method can be used to find a path to these interesting locations.