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Breadth-first Search

Breadth-first search treats the frontier as a queue

It always selects one of the first elements added to the frontier.

Complete even when the graph has cycles or is infinite

Time complexity is O(bm)
Space complexity is O(bm)
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Search with Costs

Sometimes there are costs associated with arcs.

The cost of a path is the sum of the costs of its arcs.

In this setting we often don’t just want to find just any
solution

Instead, we usually want to find the solution that minimizes
cost

We call a search algorithm which always finds such a solution
optimal
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Past knowledge and search

Some people believe that they are good at solving hard
problems without search

However, consider e.g., public key encryption codes (or
combination locks): the search problem is clear, but people
can’t solve it
When people do perform well on hard problems, it is usually
because they have useful knowledge about the structure of the
problem domain

Computers can also improve their performance when given
this sort of knowledge

in search, they can estimate the distance from a given node to
the goal through a search heuristic
in this way, they can take the goal into account when selecting
path
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Heuristic Search

Definition (search heuristic)

A search heuristic h(n) is an estimate of the cost of the shortest
path from node n to a goal node.

h can be extended to paths: h(〈n0, . . . , nk〉) = h(nk)
h(n) uses only readily obtainable information (that is easy to
compute) about a node.

Definition (admissible heuristic)

A search heuristic h(n) is admissible if it is never an overestimate
of the cost from n to a goal.

there is never a path from n to a goal that has path length
less than h(n).
another way of saying this: h(n) is a lower bound on the cost
of getting from n to the nearest goal.

Heuristic Search and A∗ CPSC 322 – Search 4, Slide 7



Recap Heuristic Search A∗ Search

Heuristic Search

Definition (search heuristic)

A search heuristic h(n) is an estimate of the cost of the shortest
path from node n to a goal node.

h can be extended to paths: h(〈n0, . . . , nk〉) = h(nk)
h(n) uses only readily obtainable information (that is easy to
compute) about a node.

Definition (admissible heuristic)

A search heuristic h(n) is admissible if it is never an overestimate
of the cost from n to a goal.

there is never a path from n to a goal that has path length
less than h(n).
another way of saying this: h(n) is a lower bound on the cost
of getting from n to the nearest goal.

Heuristic Search and A∗ CPSC 322 – Search 4, Slide 7



Recap Heuristic Search A∗ Search

Example Heuristic Functions

If the nodes are points on a Euclidean plane and the cost is
the distance, we can use the straight-line distance from n to
the closest goal as the value of h(n).

this makes sense if there are obstacles, or for other reasons not
all adjacent nodes share an arc

Likewise, if nodes are cells in a grid and the cost is the
number of steps, we can use “Manhattan distance”

this is also known as the L1 distance; Euclidean distance is L2

distance

In the 8-puzzle, we can use the number of moves between
each tile’s current position and its position in the solution
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How to Construct a Heuristic

Overall, a cost-minimizing search problem is a constrained
optimization problem

e.g., find a path from A to B which minimizes distance traveled,
subject to the constraint that the robot can’t move through walls

A relaxed version of the problem is a version of the problem where
one or more constraints have been dropped

e.g., find a path from A to B which minimizes distance traveled,
allowing the agent to move through walls
A relaxed version of a minimization problem will always return a value
which is weakly smaller than the original value: thus, it’s an admissible
heuristic

It’s usually possible to identify constraints which, when dropped,
make the problem extremely easy to solve

this is important because heuristics are not useful if they’re as hard to
solve as the original problem!

Another trick for constructing heuristics: if h1(n) is an admissible
heuristic, and h2(n) is also an admissible heuristic, then
max(h1(n), h2(n)) is also admissible.
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A∗ Search

A∗ search uses both path costs and heuristic values

cost(p) is the cost of the path p.
h(p) estimates the cost from the end of p to a goal.

Let f(p) = cost(p) + h(p).

f(p) estimates the total path cost of going from a start node
to a goal via p.

start
path p−→ n︸ ︷︷ ︸

cost(p)

estimate−→ goal︸ ︷︷ ︸
h(p)︸ ︷︷ ︸

f(p)

A∗ treats the frontier as a priority queue ordered by f(p).

It always selects the node on the frontier with the lowest
estimated total distance.
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A∗ Example

http://aispace.org/search/

delivery robot (acyclic) graph
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Analysis of A∗

Let’s assume that arc costs are strictly positive.

Completeness:

yes.

Time complexity: O(bm)
the heuristic could be completely uninformative and the edge
costs could all be the same, meaning that A∗ does the same
thing as BFS

Space complexity: O(bm)
like BFS, A∗ maintains a frontier which grows with the size of
the tree

Optimality: yes.
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